
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

A Recursive Method for Approximate
Inference in Discrete Dynamic Bayesian
Networks using Interface Junction Trees

(submitted August 2020)
Huange Wang, Martin Neil, Norman Fenton

Abstract—Dynamic Bayesian Networks (DBNs) generalize Hidden Markov Models and Kalman Filter Models and provide a

general framework for modelling and inference of discrete-time stochastic processes with Markov properties. Since exact

inference in large or dense DBNs is often infeasible due to heavy computational overheads, a robust approximate inference

approach is required. This paper presents the Forward-Backward Interface (FBI) algorithm, a recursive method for approximate

inference in discrete DBNs, whose novelty lies in two respects: (1) it introduces the Maximum Retrospective Length, which

prompts the minimum size of the temporal window required for recursive backward inference; (2) it derives a main junction tree

and two interface junction trees from every temporal window, and uses these trees to propose an approximate message

passing scheme. Both theoretical and empirical evidence demonstrate the validity of the FBI algorithm. Compared with

Murphy’s interface algorithm, the FBI algorithm can significantly reduce the space complexity of inference in discrete DBNs with

large forward interface, for only a small loss in inference accuracy and compared with the Boyen-Koller algorithm, it not only

supports automated decomposition of interface but also delivers more accurate inference results.

Index Terms—Graphs algorithms, Markov processes, Network problems, Probabilistic algorithms, Stochastic processes, Trees,

Time series analysis

—————————— � ——————————

1 INTRODUCTION

YNAMIC Bayesian Networks (DBNs) extend Bayesi-
an Networks (BNs) by modeling temporal and non-

temporal dependencies simultaneously to allow inference
over discrete time steps. DBNs also generalize Hidden
Markov Models and Kalman Filter Models allowing fac-
tored state space and arbitrary probability distributions.
Given their potential to handle time series and sequential
data, DBNs have a wide range of practical applications,
including image and vision computing [1], [2], speech and
gesture recognition [3], [4], [5], [6], traffic monitoring and
prediction [7], [8], reverse engineering of biological net-
works [9], [10], medical decision support [11], [12], and
forensic data analysis [13].

Like a BN, a DBN is a directed acyclic graph (DAG)
whose nodes represent random variables and whose arcs
represent conditional dependencies between the nodes.
But unlike BNs, arcs in DBNs are divided into two cate-
gories: intra-slice and inter-slice, to represent temporal
and non-temporal dependencies. The most common
DBNs in the literature are first-order Markov and are
time-invariant. The first-order Markov property states
that the future is independent of the past given the pre-
sent; or graphically, that the inter-slice arcs can only exist
between adjacent slices. Time-invariance constrains con-

ditional dependencies, between nodes in the same slice
and between nodes in adjacent slices, such that they do
not change over time. Obviously, a time-invariant first-
order Markov DBN can be fully represented by its first
two slices, i.e. a 2-slice Temporal BN (2-TBN) expressing
����, ��� and ����	
, ��	
|�� , ��� , where �� = ��
, … , ����
and �� = ��
, … , ���� are, respectively, the hidden (also
called unobservable) nodes and an instantiation of the
observable nodes in slice � ∈ ℤ��, � and � are, respective-
ly, the cardinalities of �� and ��. According to the condi-
tional dependencies in the 2-TBN, both ����, ��� and
����	
, ��	
|�� , ��� can be factorized as
∏ � ����|������ !��"
 ∏ � ���

#|�����
!�#"
 , where ������ are

the parent nodes of ���.
To our knowledge, there exist very few approaches to

exact inference in discrete DBNs, and these approaches
can become practically infeasible in large or dense DBNs
due to the curse of dimensionality and associated compu-
tational overhead. One naive method is to unroll a DBN
to an equivalent BN and apply the well-known Junction
Tree (JT) algorithm [14]. The JT algorithm performs belief
propagation on a JT, which is a tree decomposition that
maps the nodes of a BN into a set of cliques satisfying the
Running Intersection Property (RIP). When applied to
large or dense DBNs, this can produce a JT with a large
treewidth where inference, due to its high space complex-
ity, is intractable. An alternative method is to use Mur-
phy’s interface algorithm [15] that implements exact in-
ference recursively in a time-invariant first-order Markov

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

• H. Wang, M. Neil and N. Fenton are with the School of Electronic Engi-
neering and Computer Science, Queen Mary University of London, Lon-
don E1 4NS.
E-mail: huange.wang@qmul.ac.uk, m.neil@qmul.ac.uk,
n.fenton@qmul.ac.uk.

D

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

DBN. Given that $�, the forward interface in slice � (i.e. the
set of nodes in slice � with outgoing arcs to slice �� + 1�),
is sufficient to d-separate the past from the future, the
interface algorithm constructs a JT for every 1.5-TBN (a
TBN is composed of $�, ��	
, ��	
 and related arcs), and
then uses the JT algorithm to perform exact inference in
each JT separately and passes the Joint Probability Distri-
bution (JPD) of their sepset (i.e. intersection) between
every two adjacent JTs. Note that the interface algorithm
enforces the constraint that $� and $�	
 in each 1.5-TBN
form a clique in the corresponding JT separately, as ��$��
and ��$�	
� are required for exact inference. This con-
straint, however, makes the interface algorithm unsuita-
ble for DBNs with large forward interfaces, because the
lower bound of its space complexity increases exponen-
tially with the cardinality of the forward interface.

From a practical perspective, approximate inference
may promise a reasonable compromise between compu-
tational overhead and accuracy. A mainstream approach
to approximate inference in DBNs is stochastic sampling
that draws, using Monte Carlo methods, a number of
samples, each of which is a full instantiation of the varia-
bles studied. The empirical distribution of the samples is
then taken as an approximation to the true distribution.
The most representative algorithms in this class include
the Metropolis-Hastings (M-H) algorithm [21], [22], Gibbs
sampling [23], [24] and Particle Filtering (PF) [25]. The M-
H algorithm and Gibbs sampling are instances of Markov
Chain Monte Carlo (MCMC) methods that aim to gener-
ate samples in a sequential manner: where every newly
obtained sample is used as a stepping stone to generate
the next one, hence producing a chain with the first-order
Markov property. PF differs from the MCMC methods in
that it performs sequential importance sampling and
resampling to approximate the true distribution by a
population of weighted particles. It is widely recognized,
however, that Monte Carlo methods are most likely to fail
in large-scale models [16]. For example, to truly approxi-
mate a high-dimensional distribution, PF requires sample
size to grow exponentially with the number of variables,
and the MCMC methods suffer from an exponential
growth in convergence and mixing rates. None of these
challenges are technically trivial, as actual computing
resources usually cannot be devoted to calculation involv-
ing very large sample sizes, or too slow convergence and
mixing rates.

In contrast with stochastic sampling, another main-
stream approach to approximate inference in DBNs,
namely deterministic methods, resorts to tree-based mes-
sage passing instead of Monte Carlo methods, and there-
fore performs better in terms of speed. For nonlinear
and/or non-Gaussian state space where exact inference is
typically intractable, deterministic methods can achieve
approximate inference by first converting continuous var-
iables into discrete ones [17], [18]. However, although it is
always theoretically feasible, exact inference in discrete
state space can be computationally prohibitive. Recall that
Murphy’s interface algorithm is inefficient for discrete
DBNs with a large forward interface. In such cases a pos-
sible solution may be the Boyen-Koller (BK) algorithm

[19], which is a derivative of the interface algorithm and is
proposed for approximate inference in discrete time-
invariant first-order Markov DBNs. In each recursive
step, the BK algorithm takes �'�$�|��:�� as input, where
�'�$�|��:�� is an approximate decomposition of ��$�|��:��
and ��:� = ��, �
, … , ���. Next, it applies the JT algorithm
to the 1.5-TBN containing $� , ��	
 and ��	
 to yield
�)�$�	
|��:��	
� , which is an initial approximation to
��$�	
|��:��	
� . Last, it decomposes �)�$�	
|��:��	
� into a
more aggressive approximation �'�$�	
|��:��	
� for use in
the next recursive step. Note that the BK algorithm parti-
tions the forward interface into smaller disjoint cliques by
neglecting weak dependencies between the nodes. That
is, the JPD of the forward interface is not marginalized
out of a single clique’s potential; instead, it is approximat-
ed by the product of a few marginals, each of which is
marginalized out of the potential of a clique containing
only a subset of the forward interface. Unfortunately,
identifying the optimal partition of the forward interface
is not automated in the BK algorithm. It remains an ex-
perimental process reliant on human guesswork, which is
especially difficult where the JPD of the forward interface
cannot be computed exactly in the first place.

In this paper, we present a novel recursive method
called the Forward-Backward Interface (FBI) algorithm
for approximate inference in discrete time-invariant first-
order Markov DBNs. This method automatically decom-
poses a DBN to minimize the interface used for recursive
backward inference while maximizing the accuracy of
inference. It applies where temporal arcs can either be
persistent (i.e. arcs of the form ��� to ��	
�) or non-
persistent (i.e. arcs of the form ��� to ��	

#
 where * ≠ ,), and

nodes in the forward interface can either be hidden or
observable. Technically, it has two major innovations.
First, it introduces the concept of Maximum Retrospective
Length (MRL), which prompts the minimum size of tem-
poral window required for recursive backward inference
in a given DBN. Second, from the minimum temporal
window, it constructs a main JT, two interface JTs and a
message passing scheme for approximate forward and
backward inference, respectively. Compared to Murphy’s
interface algorithm our method has little loss in inference
accuracy but can greatly reduce the space complexity of
inference for DBNs with a large forward interface. Com-
pared to the BK algorithm our method produces smaller
inference errors by accommodating more comprehensive
associations between a larger scope of interface nodes and
does so automatically without intervention.

Fig. 1 shows a graphical summary of the FBI algo-
rithm, where each step is described in detail in the rest of
the paper. Specifically, Section 2 describes how to com-
pute the MRL for a given DBN. Section 3 covers how to
construct the main JT, the forward interface JT and the
backward interface JT determined by the MRL. Section 4
presents the message passing protocol designed for recur-
sive forward inference including filtering (i.e. estimating
the posterior distribution of a present state) and predic-
tion (i.e. estimating the posterior distribution of a future
state). Analogously, Section 5 presents the message pass-
ing protocol designed for recursive backward inference,

HUANGE WANG ET AL.: A RECURSIVE METHOD FOR APPROXIMATE INFERENCE IN DISCRETE DYNAMIC BAYESIAN NETWORKS USING INTERFACE

JUNCTION TREES 3

also known as smoothing (i.e. estimating the posterior
distribution of a past state). Section 6 proves the space
complexity and inference accuracy of the proposed meth-
od. In Section 7, we apply the FBI algorithm to repre-
sentative example DBNs, and empirically compare the
results against those of other competing algorithms. Fi-
nally, section 8 concludes the paper and discusses future
work.

Fig. 1. A flow chart of the FBI algorithm for approximate inference in

discrete time-invariant first-order Markov DBNs.

2 DETERMINING THE MAXIMUM RETROSPECTIVE

LENGTH

Proposition For any time-invariant first-order Markov DBN

with persistent arcs only, the minimum temporal window

required for recursive forward and backward inference is the

1.5-TBN, which consists of $�-
, ��, �� and the arcs between

them. For any time-invariant first-order Markov DBN with

non-persistent arcs, the minimum temporal window re-

quired for recursive forward inference is the 1.5-TBN while

that required for recursive backward inference is the �. +
1�-TBN, which consists of ���-/�:�, ���-/�:� and the arcs be-

tween them, where . is the Maximum Retrospective Length

(MRL) of the given DBN and can be determined by the

MRL algorithm described in the pseudocode shown below.

MRL algorithm:

Input: a given DBN 0

Let . = 1, 123 = ∅, �5-/3 = ∅, �5-/
3_788 = ∅ and 125-/3 = ∅

for all * ∈ 1, … , ��, where � is the cardinality of ��

if �5-/� simultaneously meets the three conditions:

(1) It has no descendant node in slice
�9 : . + 1�

(2) All its descendant nodes in slice �9 : .�,

if any, are hidden

(3) It has at least one parent node in slice
�9 : . : 1�

�5-/3 = �5-/3 ∪ �5-/�

�5-/
3_788 = �5-/

3_788 ∪ �5-/�
125-/3 = 125-/3 ∪ *

end if

end for

while �5-/
3_788 ≠ ∅

Let 125-/3< = 1, … , ��\125-/3 and 125-/3∗ = ∅

 for all * ∈ 125-/3<

if �5-/� ∈ 2?@��5-/
3_788 where 2?@��5-/

3_788

Denotes the descendant nodes of �5-/
3ABB

�5-/3 = �5-/3 ∪ �5-/�

�5-/
3_788 = �5-/

3_788 ∪ �5-/�

125-/3∗ = 125-/3 ∪ *
end if

end for

if 125-/3∗ ≠ ∅

125-/3 = 125-/3 ∪ 125-/3∗

125-/3< = 125-/3< \125-/3∗

end if

123�.� = 125-/3
. = . + 1

Let �5-/3 = ∅, �5-/
3_788 = ∅, 125-/3 = 125-/	
3 and

125-/3< = 125-/	
3<

 for all * ∈ 125-/3

�5-/3 = �5-/3 ∪ �5-/�

end for

 for all * ∈ 125-/3<

if �5-/� simultaneously meets the three con-

ditions:

(1) all its descendant nodes in slice

�9 : . + 1� belong only to �5-/	
3

(2) all its descendant nodes in slice

�9 : .�, if any, are hidden

(3) it has at least one parent node in slice
�9 : . : 1�

�5-/3 = �5-/3 ∪ �5-/�

�5-/
3ABB = �5-/

3ABB ∪ �5-/�
125-/3 = 125-/3 ∪ *

end if

end for

end while

123�.� = 125-/3

Output: . and 123

The MRL algorithm takes a given DBN, 0, as input and

has two outputs:

1. ., the MRL.

2. 123, a one-dimensional array with . elements.

. and 123 are used to construct three classes of JTs from

0, and the three classes of JTs can be connected for recur-

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

sive forward and backward inference. Details on how to

construct and connect the three classes of JTs will be given

in Section 3. In order to calculate . and 123, the MRL al-

gorithm, as shown in its pseudocode above, needs to first

calculate several intermediate variables, including:

1. ��3, the set of nodes in slice � whose posterior dis-

tribution needs to be updated with the message

passed from nodes in slice �� : 1�.

2. 12�3, the superscripts of nodes in ��3.

3. 12�3
< , the relative complement of 12�3 with respect to

1, … , ��, i.e. 12�3
< = 1, … , ��\12�3.

4. ��
3_788 , the set of nodes in slice � whose super-

scripts belong to 12�3\12�-
3 .

5. 12�3
∗
, the superscripts of nodes in ��

3_788 that have

no parent nodes in slice �� : 1�.

For proof of the proposition, please refer to Appendix

A, where two core single-step inference rules, namely the

“absorption from child to parents” rule and the “absorp-

tion from parents to child” rule, are introduced as the

cornerstone of our work. To put it shortly, the two rules

indicates the only two possible flow directions of message

passing. And in particular, the update on the child node

can be transmitted to all its parent nodes, whereas the

update on each parent node is essential for the update of

the child node.

For illustrative purposes, Fig. 2a shows an example

DBN. We apply the MRL algorithm to this DBN and

summarize the values of all intermediate variables and

the two outputs in Table 1. According to the proposition,

we know that given . = 3, 4-TBN is the minimum tem-

poral window required for recursive backward inference

in this example. To explain the logic of recursive back-

ward inference succinctly here, Fig. 2b uses different node

representations to divide the hidden nodes into four

groups. Assume ����|��:5�, where �� = ��
, … , ��D�, ��:5 =
��, �
, … , �5� and � < 9, has been obtained from the pre-

vious recursive step, the Marginal Posterior Distribution

(MPD) of each node with double-solid line can be sequen-

tially obtained by following the “absorption from child to

parents” rule. Then, the MPD of each node with double-

dashed line can be sequentially obtained by following the

“absorption from parents to child” rule. But, the MPD of

each node with single-dotted line cannot be obtained ei-

ther way in the present recursive step. Fortunately, we can

obtain ����-
|��:5� and also ����-F
:G , ��-G
:H , ��-
|��:5� ,

where ��-F
:G = ��-F
 , ��-FG � and ��-G
:H =
��-G
 , ��-GG , ��-GF , ��-GH �, using the chain rule. Given that the

slices are self-similar, we will then obtain ����-GI |��:5� ,

����-GD |��:5�, ����-FF |��:5� and ����-FH |��:5� in the next re-

cursive step by sliding the temporal window backwards

to cover slices �� : 4� to �� : 1� . Similarly, ����-FI |��:5�

and ����-FD |��:5� will be obtained by further sliding the

temporal window backwards to cover slices �� : 5� to

�� : 2�.

Fig. 2. (a) An example DBN, where hidden and observable nodes

are shaded and unshaded, respectively. (b) A 4-TBN is extracted

from the example DBN. Assume ����|��:5�, where �� = ��
, … , ��D�,
��:5 = ��, �
, … , �5� and � < 9, has been derived from the previous

recursive step, the marginal posterior distribution of each node with

double-solid line can be sequentially obtained by following the “ab-

sorption from child to parents” rule; then, the marginal posterior dis-

tribution of each node with double-dashed line can be sequentially

obtained by following the “absorption from parents to child” rule; but,

the marginal posterior distribution of each node with single-dotted

line cannot be obtained either way in this 4-TBN.

TABLE 1

THE INTERMEDIATE VARIABLES AND TWO OUTPUTS OBTAINED

BY APPLYING THE MRL ALGORITHM TO THE EXAMPLE DBN IN

FIG.2A

Although extracting ����-
|��:5� in the present step

and passing it to the next step is sufficient for recursive

backward inference, we recommend extracting and pass-

ing ����-F
:G , ��-G
:H , ��-
|��:5� instead of ����-
|��:5�. This is

based on the following three facts:

1. ��-F
:G , ��-G
:H , ��-
� are involved in both the present

and the next recursive steps.

2. ����-F
:G , ��-G
:H , ��-
|��:5� can be obtained in the pre-

sent recursive step.

Variable Value

�9:1M �9:15 , �9:16 �
�9:1

M_PQQ �9:15 , �9:16 �
129:1M 5,6�
129:1M< 1,2,3,4�
129:1M∗

 6�
�9:2M �9:23 , �9:24 , �9:25 , �9:26 �

�9:2
M_PQQ

 �9:23 , �9:24 �
129:2M 3,4,5,6�
129:2M< 1,2�
129:2M∗

 4�
�9:3M �9:33 , �9:34 , �9:35 , �9:36 �

�9:3
M_PQQ

 ∅
129:3M 3,4,5,6�
129:3M< 1,2�

. 3
12M R5,6�, 3,4,5,6�, 3,4,5,6�S

HUANGE WANG ET AL.: A RECURSIVE METHOD FOR APPROXIMATE INFERENCE IN DISCRETE DYNAMIC BAYESIAN NETWORKS USING INTERFACE

JUNCTION TREES 5

3. The sub-DBN composed from ��-F
:G , ��-G
:H , ��-
, and

related arcs, can be converted into a JT; while the

sub-DBN composed merely of ��-
 , and related

arcs, cannot be converted into a JT due to the lack

of ��-GG and ��-GH in v-structures. That is to say,

����-F
:G , ��-G
:H , ��-
|��:5� rather than ����-
|��:5�

can be decomposed into the product of smaller

terms.

123 can be used to identify the nodes with double-solid

and double-dashed lines in any �. + 1�-TBN of 0. Gener-

ally, in the �. + 1�-TBN consisting of slices �� : .� to �, the

superscripts of these nodes in slice �� : 1� are 1, … , ��,

and the superscripts of these nodes in slice �� : *�∀�∈UG,/V
are �1, … , ��\123�*� ∪ �123�*�\123�* : 1� =
1, … , ��\123�* : 1�.

3. CONSTRUCTING THREE CLASSES OF JUNCTION

TREES

Given the outputs of the MRL algorithm, we can extract slic-

es � to �� + .� from 0 as 0�:��	/�W , and further construct three

classes of JTs from 0�:��	/�W for all � ∈ U0, 9 : .V. The first class

refers to JTs constructed by the JT algorithm from each

0�:��	/�W , and is called the main JTs. These serve as the basis

for deriving the other two classes, namely the forward inter-

face JTs and the backward interface JTs. Fig. 3a and Fig. 3b

show, respectively, how different classes of JTs are connected

to support recursive forward and backward inference, where

Y9�:��	/� denotes the main JT constructed from 0�:��	/�W ,

Y9�:��	/�
Z

 and Y9�:��	/�[denote, respectively, the forward infer-

ence JT and the backward interface JT derived from Y9�:��	/�.
See Section 3.1 and 3.2 for a detailed description of the steps

to derive Y9�:��	/�
Z

 and Y9�:��	/�[from Y9�:��	/�.

Fig. 3. (a) A schematic diagram shows how to connect the main JTs

and the forward interface JTs to support recursive forward inference.

(b) A schematic diagram shows how to connect the main JTs and the

backward interface JTs to support recursive backward inference. In

both diagrams, the domain of every main JT is given in an ellipse

while the domain of every interface JT is given in a rectangle, where

��3
< = ��\��3.

3.1 Constructing the Forward Interface Junction
Tree

To derive Y9�:��	/�
Z

 from Y9�:��	/� , we follow the Forward

Interface Junction Tree (FI-JT) algorithm given below.

FI-JT algorithm:

1. Remove from Y9�:��	/� all those cliques (and the

connected sepsets and edges) that contain only

nodes in slice �� + .�. Next, remove from each re-

maining clique and sepset the nodes belonging to

slice �� + .�. Denote the resulting junction tree as

Y9�:��	/�
Z

.

2. Remove from Y9�:��	/�
Z

 a leaf clique (and the con-

nected sepset and edges) if it is a subset of the

neighboring clique. Rewrite the resulting junction

tree as Y9�:��	/�
Z

. Repeat this step until every leaf

clique in the newly obtained Y9�:��	/�
Z

 is not a subset

of its neighboring clique.

Remove from Y9�:��	/�
Z

 a non-leaf clique \� (and the con-

nected sepsets and edges) if \� ⊆ \# , where \# ∈ ^_�\��

and ^_�\�� denotes \� ’s neighboring cliques. Connect \#

with each \` ∈ ^_�\��\\# by inserting the corresponding

sepsets and edges. Rewrite the resulting junction tree as

Y9�:��	/�
Z

. Repeat this step until every non-leaf clique in the

newly obtained Y9�:��	/�
Z

 is not a subset of any of its neigh-

boring cliques. At this point, Y9�:��	/�
Z

 is a JT of maximal

cliques of nodes belonging to slices � to �� + . : 1� (for

proof, see Appendix B).

3.2 Constructing the Forward Interface Junction
Tree

To derive Y9�:��	/�[from Y9�:��	/�, we follow the BI-JT (ab-

breviation of Backward Interface Junction Tree) algorithm

given below.

BI-JT algorithm:

1. Remove from Y9�:��	/� all those cliques (and the

connected sepsets and edges) that contain only

nodes in R��, �� , ���	
�:��	/-
�3 S , where ��	�,∀�∈U
,/-
V3

can be identified by 123�. : *�, i.e. the superscripts

of nodes in ��	�3 correspond to 123�. : *� . Next,

remove from each remaining clique and sepset the

nodes belonging to R��, �� , ���	
�:��	/-
�3 S . Denote

the resulting junction tree by Y9�:��	/�[.

2. Remove from Y9�:��	/�[a leaf clique (and the con-

nected sepset and edges) if it is a subset of the

neighboring clique. Rewrite the resulting junction

tree as Y9�:��	/�[. Repeat this step until every leaf

clique in the newly obtained Y9�:��	/�[is not a subset

of its neighboring clique.

3. Remove from Y9�:��	/�[a non-leaf clique \� (and the

connected sepsets and edges) if \� ⊆ \#, where \# ∈
^_�\��. Connect \# with each \` ∈ ^_�\��\\# by in-

serting the corresponding sepsets and edges. Re-

write the resulting junction tree as Y9�:��	/�[. Repeat

this step until every non-leaf clique in the newly

obtained Y9�:��	/�[is not a subset of any of its neigh-

boring cliques. At this point, Y9�:��	/�[is a JT of max-

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

imal cliques of nodes belonging to

R���	
�:��	/-
�3< , ��	/ , ���	
�:��	/�S, where ��3
< = ��\��3.

In order to visually represent the mechanism of the FI-

JT algorithm and the BI-JT algorithm, Fig. 4a shows a syn-

thetic DBN, for which . = 2 and 123 = 8,8� are obtained

using the MRL algorithm. . = 2 indicates that a main JT

needs to be built for every 3-TBN using the JT algorithm

as shown by the illustrative example in Fig. 4b and Fig. 5a.

Given the main JT, Y9
:F (Fig. 5a), a step-by-step

walkthrough to construct the forward interface JT, Y9
:F
Z

(Fig. 5b), and the backward interface JT, Y9
:F[(Fig. 5c), is

provided in Fig. S1 and Fig. S2 (Fig. S hereafter refers to

figure in the supplemental material), respectively.

Fig. 4. (a) An example DBN is expressed in the form of a 2-TBN.

Hidden and observable nodes are represented by shaded and un-

shaded circles, respectively. Nodes in the same slice are named

alphabetically. (b) For illustrative purposes, a 3-TBN is extracted

from the DBN in (a).

4 FORWARD INFERENCE

Y9�:��	/�
Z

 is designed to pass a decomposed message from

Y9��-
�:��	/-
� to Y9�:��	/� . Specifically, following the first

round of belief propagation in Y9��-
�:��	/-
� , all clique

potentials in Y9�:��	/�
Z

 can be extracted from Y9��-
�:��	/-
�.

These clique potentials, along with related sepset poten-

tials, are then passed to Y9�:��	/�, since they can jointly de-

fine the a priori factors of the first round of belief propa-

gation in Y9�:��	/�.
Y9�:��	/�

Z
 is a JT containing nodes in slices � to �� + . :

1� . That is, Y9�:��	/�
Z

 restores the connectivity between

nodes in slices � to �� + . : 1� but neglects the associa-

tions induced by slices prior to �. This indicates two facts:

First, the product of clique potentials divided by the

product of sepset potentials in Y9�:��	/�
Z

 represents an ap-

proximation to ����:��	/-
�|��:��	/-
� .

Second, the forward inference process after the first

round of belief propagation in the very first main JT, Y9�:/,

deals with approximate rather than exact beliefs. To be

more precise, the forward inference process involves two

approximations to ����:��	/-
�|��:��	/-
� for ∀� ∈

U1, 9 : .V. The first, denoted by �)���:��	/-
�|��:��	/-
� , is

the marginal obtained in the first round of belief propaga-

tion in Y9��-
�:��	/-
� . The second, denoted by

�'���:��	/-
�|��:��	/-
� , is an approximate decomposition

of �)���:��	/-
�|��:��	/-
� and is passed from Y9��-
�:��	/-
�
to Y9�:��	/� via Y9�:��	/�

Z
.

Fig. 5. (a) For the 3-TBN in Fig. 4b, a main JT, Y9
:F, is constructed

by the JT algorithm. (b) From Y9
:F, a forward interface JT, Y9
:F
Z

, is
derived by the FI-JT algorithm. (c) From Y9
:F, a backward interface
JT, Y9
:F[, is derived by the BI-JT algorithm. For simplicity, all sepsets
are omitted in (a), (b) and (c).

HUANGE WANG ET AL.: A RECURSIVE METHOD FOR APPROXIMATE INFERENCE IN DISCRETE DYNAMIC BAYESIAN NETWORKS USING INTERFACE

JUNCTION TREES 7

In this way, the approximate forward inference process

can be abstractly summarized as below:

1. Pass �'���:��	/-
�|��:��	/-
� from Y9��-
�:��	/-
� to

Y9�:��	/� via Y9�:��	/�
Z

;

2. Obtain �)���:��	/�|��:��	/� in the first round of be-

lief propagation in Y9�:��	/�, and then marginalize

out �)����	
�:��	/�|��:��	/� ;

3. Decompose �)����	
�:��	/�|��:��	/� into

�'����	
�:��	/�|��:��	/� approximately so that step 1-

3 can be performed recursively.

To elaborate on this recursive process, we reorganize it

into the three main steps as detailed in sections 4.1 – 4.3.

These three main steps are consistent with the description

of forward inference in Fig. 1 and are implemented by

several sub-steps, respectively.

4.1 Extracting Message from the Main JT to the
Forward Interface JT

When extracting the clique potentials in Y9�:��	/�
Z

 from

Y9��-
�:��	/-
�, we may encounter two mutually exclusive

situations that require different solutions. In the first situ-

ation when clique \� ∈ Y9�:��	/�
Z

 is a subset of clique \# ∈
Y9��-
�:��	/-
�, the potential of \� , bcd, can be directly mar-

ginalized out of bce, the potential of clique \# . In the sec-

ond situation when \� is not a subset of any clique in

Y9��-
�:��	/-
�, bcd can be obtained using the Forward Mes-

sage Extraction (FME) algorithm that performs belief

propagation and marginalization in a temporary JT,

Y9��-
�:��	/-
�
Zfd , where gcd denotes forward message extrac-

tion for \� :

FME algorithm:

1. Extract from Y9��-
�:��	/-
� the subgraph formed by

all those cliques (and the sepsets and edges be-

tween them) that contain at least one node in \� .
Denote the subgraph as the junction tree

Y9��-
�:��	/-
�
Zfd .

2. Remove from Y9��-
�:��	/-
�
Zfd a leaf clique \# (and the

connected sepsets and edges) if �\� ∩ \# ⊆
�\� ∩ \`� where \` ∈ ^_�\# . Rewrite the resulting

graph, which is still a JT satisfying the RIP, as

Y9��-
�:��	/-
�
Zfd . Repeat this step until every leaf

clique in the newly obtained Y9��-
�:��	/-
�
Zfd is not a

subset of its neighboring clique.

3. As nodes in \� are all included in Y9��-
�:��	/-
�
Zfd , bcd

can be marginalized out of the JPD of all nodes in

Y9��-
�:��	/-
�
Zfd , where that JPD can be expressed as

the product of clique potentials divided by the

product of sepset potentials in Y9��-
�:��	/-
�
Zfd .

Fig. 5b shows there are two cliques �
I�GF�GH�GI� and

�
I�GI�GD�Gi� in Y9
:F
Z

. Analogously, there are two cliques

�GI�FF�FH�FI� and �GI�FI�FD�Fi� in Y9G:H
Z

. In order to achieve

approximate forward inference in Y9G:H, �)��GI�FF�FH�FI|��:F�

and �)��GI�FI�FD�Fi|��:F� need to be passed from Y9
:F to

Y9G:H via Y9G:H
Z

. Since �GI�FF�FH�FI� is a subset of clique

�GH�GI�FF�FH�FI� in Y9
:F , �)��GI�FF�FH�FI|��:F� can be simply

extracted from �)��GH�GI�FF�FH�FI|��:F� . In contrast,

�GI�FI�FD�Fi� is not a subset of any clique in Y9
:F. Thus, we

need to follow the FME algorithm to generate Y9
:F
Zjklmknmknoknpq

as , and compute

�)��GI�FI�FD�Fi|��:F� as the product of �)��
I�GI�GD�Gi�FI|��:F�,

�)��GD�Gi�FI�Fi|��:F� and �)��GD�FI�FD�Fi|��:F� divided by the

product of �)��GD�Gi�FI|��:F� and �)��GD�FI�Fi|��:F�, where all

the five factors are available in Y9
:F.

4.2 Message Passing from the Forward Interface JT
to the Main JT

Recall that Y9�:��	/�
Z

 is a JT containing the maximal cliques

of nodes in slices � to �� + . : 1�. In other words, Y9�:��	/�
Z

compactly decompose the JPD of all nodes involved into

the product of all clique potentials divided by the product

of all sepset potentials. Thus, the message passing from

Y9�:��	/�
Z

 to Y9�:��	/� can be achieved through the Forward

Message Passing (FMP) algorithm:

FMP algorithm:

1. Start with an arbitrary leaf clique in Y9�:��	/�
Z

, say \� ,
specify bcd as the message passed from \� to

Y9�:��	/�.
2. Move to \�’s neighboring clique in Y9�:��	/�

Z
, say \# ,

specify
rfe
rsde

 as the message passed from \# to

Y9�:��	/� , where t�# denotes the sepset between \�
and \# .

3. For all cliques \` ∈ ^_�\# \\� , specify
rfu
rseu

 as the

message passed from \` to Y9�:��	/�. Continue this

process along the remaining pathways in Y9�:��	/�
Z

until the message passed from every clique in

Y9�:��	/�
Z

 to Y9�:��	/� is specified.

Please note the use of different starting points in the

FMP algorithm merely indicates that the clique and sepset

potentials in Y9�:��	/�
Z

 are grouped differently when passed

to Y9�:��	/�. For instance, when we start from the clique

�

�
G�
F�G
� in Fig. 5b, the messages passed from the five

cliques �

�
G�
F�G
� , �
G�
F�G
�GG� , �
F�G
�GG�GF� ,

�
F�
I�GF�GH� and �
F�
H�
I�GH� to Y9
:F are, respectively,

�)��

�
G�
F�G
|��:G� ,
v)�wxlwxnwlxwll|�y:l

v)�wxlwxnwlx|�y:l ,
v)�wxnwlxwllwln|�y:l

v)�wxnwlxwll|�y:l ,

v)�wxnwxmwlnwlz|�y:l
v)�wxnwln|�y:l and

v)�wxnwxzwxmwlz|�y:l
v)�wxnwxmwlz|�y:l . Instead, when we start

from the clique �
F�
H�
I�GH� in Fig. 5b, the messages

passed from those five cliques to Y9
:F are, respectively,
v)�wxxwxlwxnwlx|�y:l

v)�wxlwxnwlx|�y:l ,
v)�wxlwxnwlxwll|�y:l

v)�wxnwlxwll|�y:l ,
v)�wxnwlxwllwln|�y:l

v)�wxnwln|�y:l ,

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

v)�wxnwxmwlnwlz|�y:l
v)�wxnwxmwlz|�y:l and �)��
F�
H�
I�GH|��:G�. Thus, the choice of

starting point makes no difference, because the set of nu-

merators and denominators passed from Y9�:��	/�
Z

 to

Y9�:��	/� is always the same.

4.3 Clique Potential Initialization and Belief
Propagation in the Main JT

The initial clique potentials in Y9�:��	/� are required for

forward inference in Y9�:��	/�. They can be defined by the

Clique Potential Initialization (CPI) algorithm given the

messages passed from the forward interface JT.

CPI algorithm:

1. Initialize each clique potential in Y9�:��	/� to the

unit measure.

2. For all cliques \� ∈ Y9�:��	/�
Z

, find in Y9�:��	/� a clique

\# s.t. \� ⊆ \#, multiply bce by the message passed

from \� to Y9�:��	/�.
3. For all nodes ��	/� ∈ ��	/ , find in Y9�:��	/� a clique

\` that contains ��	/� and �����	/� , multiply bcu

by the conditional probability distribution

� ���	/� |�����	/� !.

4. Entre any observations ��	/ into Y9�:��	/�.

In our running example, the clique �
F�G
�GG�GF� in Y9
:F
Z

is a subset of the clique �
F�G
�GG�GF�FF� in Y9
:F , and the

domain of ���FF|����FF� includes �GF�F
�FG� , which is a

subset of the clique �G
�GF�F
�FG�FF� in Y9
:F. Thus, by fol-

lowing the CPI algorithm, we initialize bRwxnwlxwllwlnwnnS as

�)��
F�G
�GG�GF|��:G� and bRwlxwlnwnxwnlwnnS as ���FF|�GF�F
�FG� in

Y9
:F.

Upon initialization, �'���:��	/-
�|��:��	/-
� (which is

formally the product of all messages passed from Y9�:��	/�
Z

to Y9�:��	/�), � ���	/� |�����	/� ! for all ��	/� ∈ ��	/ , and the

observations ��	/ are all taken into account, that is, the

prerequisites of belief propagation in Y9�:��	/� using the JT

algorithm are all met. Next, we adopt the serial protocol

of the JT algorithm as below:

1. Select an arbitrary clique in Y9�:��	/� as the root

clique.

2. Collect messages from the leaf cliques to the root

clique.

3. Distribute messages from the root clique to the

leaf cliques.

5 BACKWARD INFERENCE

Subsequent to approximate forward inference described

in Section 4, approximate backward inference can be

achieved recursively by first extracting a set of messages

from Y9��	
�:��	/	
�, then passing these messages to Y9�:��	/�
via Y9�:��	/�[and propagating them in Y9�:��	/�.

5.1 Extracting Message from the Main JT to the
Backward Interface JT

�����	
�:��	/-
�3< , ��	/|��:5 can be obtained by belief updat-

ing in Y9��	
�:��	/	
� given �����	G�:��	/�3< , ��	/	
|��:5 (see

(18), (19) and (20) in Appendix A). Thus, by passing

�����	
�:��	/-
�3< , ��	/|��:5 from Y9��	
�:��	/	
� to Y9�:��	/� ,

where � ∈ U0, 9 : . : 1V, we can achieve a recursive im-

plementation of backward inference. Recall that Y9�:��	/�[is

a JT of maximal cliques of nodes belonging to

R���	
�:��	/-
�3< , ��	/, ���	
�:��	/�S, which means that Y9�:��	/�[

factorizes �����	
�:��	/-
�3< , ��	/|��:5 as the product of

clique potentials divided by the product of sepset poten-

tials. Moreover, the construction of Y9�:��	/�[shows that for

all cliques \� ∈ Y9�:��	/�[, there exists a clique \# in Y9�:��	/�
s.t. \� ⊆ \# . Therefore, we only need to extract from

Y9��	
�:��	/	
� the potentials of all cliques in Y9�:��	/�[, and

pass them to Y9�:��	/� to meet the prerequisite for belief

updating in Y9�:��	/� . However, given that the recursive

forward inference beforehand generates approximate in-

stead of exact beliefs for nodes in Y9�:��	/�∀�∈U
,�	/V, all be-

liefs and messages involved throughout the recursive

backward inference are accordingly approximate also.

Similar to Section 4.1, when extracting from

Y9��	
�:��	/	
� the clique potentials in Y9�:��	/�[, we may en-

counter two mutually exclusive situations that require

different solutions. In the first situation when clique \� ∈
Y9�:��	/�[is a subset of clique \# ∈ Y9��	
�:��	/	
�, bcd can be

directly marginalized out of bce. In the second situation

when \� is not a subset of any clique in Y9��	
�:��	/	
�, bcd

can be obtained using the Backward Message Extraction

(BME) algorithm that performs belief propagation and

marginalization in a temporary JT, Y9��	
�:��	/	
�
[fd , where {cd

denotes backward message extraction for \� :

BME Algorithm:

1. Extract from Y9��	
�:��	/	
� the subgraph formed by

all those cliques (and the sepsets and edges be-

tween them) that contain at least one node in \� .
Denote the subgraph as the junction tree

Y9��	
�:��	/	
�
[fd .

2. Remove from Y9��	
�:��	/	
�
[fd a leaf clique \# (and the

connected sepsets and edges) if �\� ∩ \# ⊆
�\� ∩ \`� where \` ∈ ^_�\# . Rewrite the resulting

graph, which is still a JT satisfying the RIP, as

Y9��	
�:��	/	
�
[fd . Repeat this step until every leaf

clique in the newly obtained Y9��	
�:��	/	
�
[fd is not a

subset of its neighboring clique.

3. As nodes in \� are all included in Y9��	
�:��	/	
�
[fd , bcd

can be marginalized out of the JPD of all nodes in

Y9��	
�:��	/	
�
[fd , where that JPD can be expressed as

the product of clique potentials divided by the

HUANGE WANG ET AL.: A RECURSIVE METHOD FOR APPROXIMATE INFERENCE IN DISCRETE DYNAMIC BAYESIAN NETWORKS USING INTERFACE

JUNCTION TREES 9

product of sepset potentials in Y9��	
�:��	/	
�
[fd .

Fig. 5c shows two cliques �Gi�Fi�F|� and �GD�Gi�FI�Fi� in

Y9
:F[. Analogously, two cliques �
i�Gi�G|� and �
D�
i�GI�Gi�

exist in Y9�:G[. In order to achieve approximate backward

inference in Y9�:G[, �)��
i�Gi�G||��:5� and �)��
D�
i�GI�Gi|��:5�

need to be passed from Y9
:F to Y9�:G via Y9�:G[. Since the

clique �
i�Gi�G|� also exists in Y9
:F, �)��
i�Gi�G||��:5� is di-

rectly available in Y9
:F. In contrast, �
D�
i�GI�Gi� is not a

subset of any clique in Y9
:F. Thus, we need to follow the

BME algorithm to generate Y9
:F
[jkxokxpklmklpq

 as

, and compute

�)��
D�
i�GI�Gi|��:5� as the product of �)��
I�GI�GD�Gi�FI|��:5�,

�)��
I�
i�GD�Gi|��:5� and �)��
I�
D�
i�GD|��:5� divided by the

product of �)��
I�GD�Gi|��:5� and �)��
I�
i�GD|��:5�, where all

the five factors are available in Y9
:F.

5.2 Message Passing via the Backward Interface JT
and Belief Updating in the Main JT

Message passing from Y9�:��	/�[to Y9�:��	/� and the second

round of belief propagation in Y9�:��	/� can be achieved

synchronously by the Backward Message Passing and

Belief Updating (BMP-BU) algorithm.

BMP-BU algorithm:

for all cliques * ∈ Y9�:��+.�{

Find in Y9�:��	/� a clique \# s.t. \� ⊆ \#;

Update bce by absorbing from bcd , i.e. compute

bce
∗ = bce × rfd

∑ rfe�fe\�fd
 where �cd denotes the

hidden nodes in \� ;
Let bce = bce

∗ ;

Distribute messages from root \# in Y9�:��	/� , i.e.

update all other clique potentials in Y9�:��	/�
given bce;

end for

6 SPACE COMPLEXITY AND INFERENCE ACCURACY

In the proposed FBI algorithm, the two interface JTs are

both extracted from the main JT. This means the

treewidth of either interface JT cannot exceed that of the

main JT. Thus, the space complexity of the FBI algorithm

depends entirely on the treewidth of the main JT. It has

been proven that a �-vertex graph with separability t has

treewidth ��t × log��, where the separability of a graph

refers to the maximum number of internally vertex-

disjoint paths with the same non-adjacent end vertices

[20]. For a given DBN, let . be its MRL, t be its separabil-

ity after moralization, � be the number of nodes per slice,

and � be the maximum number of states a hidden node

can take, then the treewidth of the main JT is � �t ×
log�� × �. + 1� ! and the space complexity of the FBI al-

gorithm is ����×�����×�/	
� . We focus on space complexi-

ty rather than time complexity because the former is a

crucial constraint on practical application. Murphy’s inter-

face algorithm has space complexity ���|$|	��, where |$|
is the cardinality of the forward interface [15]. By compar-

ison, we can conclude that for a DBN with large forward

interface, where t × log�� × �. + 1� < |$| + �, our meth-

od will achieve inference with lower space complexity.

The BK algorithm implements forward inference re-

cursively in two main steps. First, �'�$�-
|��:��-
� , an ap-

proximate decomposition of �)�$�-
|��:��-
� , is propagat-

ed in a JT built from the 1.5-TBN involving $�-
, �� and

�� , so as to generate �)�$�-
, ��|��:�� . Next, �)�$�|��:�� is

marginalized out of �)�$�-
, ��|��:�� and then projected

into �'�$�|��:�� based on a pre-determined clique decom-

position of $� . The risk of this recursive process is that

errors may accumulate over time, thus rendering infer-

ence results inaccurate. Intuitively, there are two sources

of error: the “old” error inherited from �'�$�-
|��:��-
� to

�)�$�|��:�� , and the “new” error induced by projecting

�)�$�|��:�� into �'�$�|��:��. Fortunately, the stochasticity of

state transitions and the diversity of observations serve to

reduce the errors on expectation [19]. It turns out that the

BK algorithm produces bounded errors over time because

� ���/ ���$�|��:��||�'�$�|��:��!� ≤ ��
� , where � is the expec-

tation taken over all possible observation sequences, ��/

is the KL divergence, � is the mixing rate of the DBN, and

�� = ��/ ���$�|��:��||�'�$�|��:��! : ��/ ���$�|��:��||�)�$�|��:��!

[15].

The FBI algorithm is essentially similar to the BK algo-

rithm, with the difference being that �'�$�-
|��:��-
� ,

�)�$�-
, ��|��:�� , �)�$�|��:�� and �'�$�|��:�� in the BK algo-

rithm are, respectively, replaced by �'����-/�:��-
�|��:��-
� ,

�)����-/�:�|��:� , �)����-/	
�:�|��:� and �'����-/	
�:�|��:� in

the FBI algorithm. By comparison, the BK algorithm con-

structs a JT for every 1.5-TBN and uses the forward inter-

face to pass messages both forwards and backwards;

whereas the FBI algorithm constructs a main JT for every

�. + 1�-TBN, and extract two interface JTs from each main

JT to pass messages forwards and backwards respectively.

Moreover, in order to reduce the space complexity, the BK

algorithm partitions the forward interface into smaller

disjoint cliques; whereas the FBI algorithm organizes the

two types of interfaces in the form of JT that satisfies the

RIP. As a result, in discrete DBNs with large forward in-

terfaces, the BK algorithm usually fails to accommodate

the associations in $�-
, ��� induced by slices prior to

�� : 1� when generating �)�$�-
, ��|��:�� given

�'�$�-
|��:��-
� ; and it neglects the associations between

the disjoint cliques of $� when projecting �)�$�|��:�� into

�'�$�|��:��. In contrast, the FBI algorithm only neglects the

associations in ���-/�:� induced by slices prior to �� : .�

when generating �)����-/�:�|��:� given

�'����-/�:��-
�|��:��-
� ; and it only neglects the associations

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

in ���-/	
�:� induced by slice �� : .� when projecting

�)����-/	
�:�|��:� into �'����-/	
�:�|��:� . Thus, it is safe to

conclude that in discrete DBNs with large forward inter-

faces, as long as the main JT has practically tractable

treewidth, the FBI algorithm also has bounded errors over

time and its errors are always smaller than those of the

BK algorithm.

7 EXAMPLES

The validity of the FBI algorithm has been empirically

verified by two example DBNs. The first is the example

run above, which demonstrates the sub-algorithms in-

volved. The second (Fig. 7a) was first introduced in [19] to

monitor a wastewater treatment plant and was also used

as a test case of the BK algorithm in [19] and [15].

7.1 The First Example DBN

Once the main JT and the forward interface JT are estab-

lished for every 3-TBN, forward inference including filter-

ing and prediction can be achieved by recursively imple-

menting the three main steps described in Section 4. This

recursive process corresponds to the top loop in Fig. 1. It

can also be graphically elaborated in another way as

shown in Fig. 6a, where two sets of nodes are visually

marked in a 3-TBN. The first set refers to nodes in the

corresponding forward interface JT, which is used to pass

messages forwards. The second set refers to nodes in the

corresponding main JT, and the approximate posterior

distribution of these nodes, given observations up to the

present, becomes available once belief propagation in the

main JT is done.

After filtering is done for the last slice of interest and

the backward interface JT is constructed for every 3-TBN,

backward inference, also called smoothing, can be

achieved by recursively implementing the two main steps

described in Section 5. This recursive process corresponds

to the bottom loop in Fig. 1. It can also be graphically

elaborated in another way as shown in Fig. 6b, where

three sets of nodes are visually marked in a 3-TBN. The

first set refers to nodes in the corresponding backward

interface JT, which is used to pass messages backwards.

The second set refers to nodes whose approximate poste-

rior distribution, given observations up to the last slice,

becomes available once belief updating in the correspond-

ing main JT is done. In contrast, the third set refers to

nodes whose approximate posterior distribution, given

observations up to the last slice, is not yet available in this

3-TBN.

For the sake of simplicity, all nodes in this example

DBN are assumed to be binary. Please refer to the sup-

plemental material for the parameter settings and the ob-

servations in slices up to � = 15. We used the FBI algo-

rithm to achieve filtering and smoothing. In order to

check the accuracy of inference, we unrolled the DBN to

Fig. 6. (a) In forward inference, the nodes in a 3-TBN can be visually

marked as two sets. The first set, marked in the solid frame, refers to

nodes in the forward interface JT. The second set, marked in the

dashed frame, refers to nodes in the main JT. Their approximate

posterior distribution, given observations up to the present, becomes

available once belief propagation in the main JT is done. (b) In

backward inference, the nodes in a 3-TBN can be visually marked as

three sets. The first set, marked in the solid frame, refers to nodes in

the backward interface JT. The second set, marked in the dashed

frame, refers to nodes whose approximate posterior distribution,

given observations up to the last slice, becomes available once be-

lief updating in the corresponding main JT is done. The third set,

marked in the dotted frame and excluded from the solid and dotted

frames, refers to nodes whose approximate posterior distribution,

given observations up to the last slice, is not yet available in this 3-

TBN.

include slices up to every � ∈ U0, … ,15V and applied the JT

algorithm to each resulting BN individually. This bench-

mark exact inference is implemented in AgenaRisk [26], a

commercial software for probabilistic reasoning using BN

technology. We also implemented the BK algorithm in

BNT, a Bayes net toolbox for Matlab [27]. But for a fair

comparison, only four partitioning schemes of the for-

HUANGE WANG ET AL.: A RECURSIVE METHOD FOR APPROXIMATE INFERENCE IN DISCRETE DYNAMIC BAYESIAN NETWORKS USING INTERFACE

JUNCTION TREES 11

ward interface, including �U��
��G��F��HV, U��I��D��iV� ,

�U��
��G��FV, U��H��I��D��iV� , �U��
��G��F��H��IV, U��D��iV� ,

�U��
��GV, U��F��H��I��D��iV�, were considered in the BK algo-

rithm based on two facts: (1) partitioning the forward in-

terface into fewer disjoint clusters will produce smaller

inference error, (2) the maximum sizes of cliques in the

forward interface JT and the backward interface JT con-

structed by the FBI algorithm are 4 and 5, respectively

(see Fig. 5b and Fig. 5c). That is, the four candidate parti-

tioning schemes were selected for comparing the infer-

ence accuracy of the BK algorithm and the FBI algorithm

given roughly the same space complexity. It turns out that

the best partitioning scheme among the four candidates is

�U��
��GV, U��F��H��I��D��iV�, as it produces the lowest mean

KL-divergence in terms of singleton marginals. Table 2

compares results for some singleton and multivariate

marginals. For a comprehensive summary of all inference

results achieved by the three methods, please refer to the

supplemental material. Not surprisingly, the outcomes of

the FBI algorithm are more accurate than those of the BK

algorithm; and more impressively, they are highly con-

sistent with the exact inference results.

In addition to unrolling the DBN, the interface algo-

rithm can also implement exact inference in a DBN, but

only if the treewidth of the JT built for 1.5-TBN is feasible

in practice. To apply the interface algorithm to this exam-

ple DBN, we first extracted a 1.5-TBN composed of $�-
 =
��-

 ��-
G ��-
F ��-
H ��-
I ��-
D ��-
i � , �� =
��
��G��F��H��I��D��i��|� and ��, and then enforced the con-

straint that $�-
 and $� each belong to a clique in the JT

built for the 1.5-TBN. This constraint can be ensured by

simply adding two dummy nodes, which are assumed to

be a common child node of $�-
 and $�, respectively (see

Fig. S3a). In result, the maximum size of cliques in the JT

constructed by the interface algorithm is 8 (see Fig. S3b).

In the same way we can show that the maximum size of

cliques in the JT constructed by the BK algorithm with the

partitioning scheme �U��
��GV, U��F��H��I��D��iV� is 6 (see Fig.

S3c and Fig. S3d). Compared with Fig. 5a, where the max-

imum clique size is 5, it shows that the FBI algorithm has

lower space complexity than the interface algorithm and

the BK algorithm in this example.

7.2 The Second Example DBN

Since each hidden node in Fig. 7a has a persistent arc

from the previous slice, the MRL algorithms returns . =
1. This means that to use the FBI algorithm, a main JT,

Y9�:��	
� (Fig. 7b), needs to be built for every 2-TBN. Next,

by following the FI-JT and BI-JT algorithms in Section 3,

we derive from Y9�:��	
� a forward interface JT, Y9�:��	
�
Z

(Fig. 7c), and a backward interface JT, Y9�:��	
�[(Fig. 7d),

respectively. What makes this DBN special is that it has

no intra-slice arcs between the hidden nodes. Therefore,

Y9�:��	
�
Z

 consists of overlapping cliques; while Y9�:��	
�[con-

sists of disjoint cliques, in particular, each of the hidden

nodes in a slice belongs to a distinct clique. Clearly, the

backward interface JT of this DBN represents the worst

case.

Again, for simplicity, we assume all nodes in this DBN

have binary states. For the parameter settings and the

observations in slices up to � = 20, please refer to the

supplemental material. Table 3 shows the KL-divergence

for some inferred singleton and multivariate posterior

distributions compared to the corresponding exact distri-

butions. For all inference results obtained in this example,

please also refer to the supplemental material. In Table 3,

one multivariate posterior distribution involves ��F, ��H, ��I

and ��D, which belong to the same clique in the BK parti-

tions; the other multivariate posterior distribution in-

volves ��G and ��i , which are located in two disjoint

cliques in the BK partitions. Intuitively, the BK algorithm

produces lower inference accuracy on multivariate poste-

rior distributions for nodes belonging to multiple cliques

rather than a single clique. This is confirmed by the rele-

vant results in Table 3. In contrast, the FBI algorithm has

similar inference accuracy on multivariate posterior dis-

tributions for nodes belonging to one or more partitioned

cliques. Furthermore, for all forward inference tasks, the

FBI algorithm outperforms the BK algorithm in terms of

inference accuracy. As for backward inference tasks, one

would think the performance of the FBI algorithm would

be poor, since the backward interface JT in this example

represents the worst case, i.e. each hidden node locates in

a distinct isolated clique. However, as indicated by Table

3, the FBI algorithm exhibits comparable performance to

the BK algorithm, and in particular has a more accurate

multivariate posterior distribution on ��G and ��i.

Lastly, in order to compare the space complexity of differ-

ent methods, we added dummy nodes to group the hid-

den nodes according to the specific requirements of the

interface algorithm and the BK algorithm (Fig. S4a and

Fig. S4c). As a result, for each 1.5-TBN, the maximum

clique size in the JT constructed by the interface algorithm

is 11 (Fig. S4b), and the maximum clique size in the JT

constructed by the BK algorithm is 7 (Fig. S4d). In com-

parison, the main JT built by the FBI algorithm, as shown

in Fig. 7b, has the maximum clique of 6 nodes. That is, in

this example the FBI algorithm still has lower space com-

plexity than the interface algorithm and the BK algorithm.

8 CONCLUSION

Exact inference can be hardly achieved in large or dense
DBNs due to the curse of dimensionality and associated
computational overhead. Approximate inference has thus
become a hot spot in theoretical and applied research.
Tree-based deterministic approximate inference outper-
forms the Monte Carlo method in speed but can still be
computationally prohibitive in discrete DBNs with large

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Fig. 7. (a) The water DBN, designed to monitor a waste water treatment plant. The model was originally introduced in [19] and later used in

[15]. Again, the hidden and observable nodes are represented by shaded and unshaded circles, respectively. The dotted boxes group to-

gether nodes that will be used in the BK approximation. (b) From the 2-TBN in (a), a main JT, Y9�:��	
�, is constructed by the JT algorithm. (c)

From Y9�:��	
�, a forward interface JT, Y9�:��	
�
Z

, is derived by the FI-JT algorithm. (d) From Y9�:��	
�, a backward interface JT, Y9�:��	
�[, is derived

by the BI-JT algorithm.

TABLE 2

PARTIAL INFERENCE RESULTS OF THE FIRST EXAMPLE DBN

TABLE 3

PARTIAL INFERENCE RESULTS OF THE SECOND EXAMPLE DBN

 � = 11 � = 12 � = 13 � = 14 � = 15

1
8 × � �. �����* |�0:�1:4 ||�'���* |�0:�1:4 !

*∈U1,8V

FBI 5.674E-07 2.332E-07 3.179E-07 5.229E-07 8.714E-07

BK(U��1��2V,U��3��4��5��6V, U��7��8V) 3.903E-04 1.824E-05 1.632E-04 6.469E-04 1.030E-03

�. �����3��4��5��6|�0:�1:4�||�'���3��4��5��6|�0:�1:4�!
FBI 1.847E-06 7.537E-07 1.993E-06 2.211E-06 5.859E-06

BK(U��1��2V,U��3��4��5��6V, U��7��8V) 1.859E-05 1.508E-06 1.242E-05 2.763E-05 6.035E-05

�. �����2��7|�0:�1:4�||�'���2��7|�0:�1:4�!
FBI 1.055E-06 2.561E-07 3.509E-08 3.108E-07 4.735E-08

BK(U��1��2V,U��3��4��5��6V, U��7��8V) 5.634E-02 5.685E-02 5.903E-02 6.290E-02 6.503E-02

1
8 × � �. �����*|�0:201:4 ||�'���* |�0:201:4 !

*∈U1,8V

FBI 4.704E-04 4.682E-04 1.291E-03 1.108E-03 7.140E-05

BK(U��1��2V,U��3��4��5��6V, U��7��8V) 3.243E-04 1.098E-03 1.348E-03 5.911E-04 4.488E-04

�. �����3��4��5��6|�0:201:4 �||�'���3��4��5��6|�0:201:4 �!
FBI 2.121E-03 2.982E-03 8.323E-03 7.457E-03 4.460E-04

BK(U��1��2V,U��3��4��5��6V, U��7��8V) 4.855E-05 2.249E-04 2.123E-04 1.490E-04 1.778E-05

�. �����2��7|�0:201:4 �||�'���2��7|�0:201:4 �!
FBI 1.307E-03 1.960E-04 1.562E-04 4.718E-04 3.824E-04

BK(U��1��2V,U��3��4��5��6V, U��7��8V) 6.162E-02 6.651E-02 6.230E-02 5.961E-02 5.905E-02

 � = 6 � = 7 � = 8 � = 9 � = 10

1
8 × � �. �����*|�0:� ||�'���* |�0:� !

*∈U1,8V

FBI 2.585E-10 2.665E-10 3.104E-10 2.830E-11 1.125E-10
BK(U��1��2V,U��3��4��5��6��7V) 1.664E-06 1.035E-05 2.720E-05 7.656E-07 1.497E-05

�. �����5��6��7|�0:��||�'���5��6��7|�0:��!
FBI 1.567E-10 8.464E-11 4.755E-11 4.460E-11 2.057E-11

BK(U��1��2V,U��3��4��5��6��7V) 8.362E-07 2.170E-07 3.041E-07 8.875E-07 4.462E-07

1
8 × � �. �����* |�0:15 ||�'���* |�0:15 !

*∈U1,8V

FBI 3.213E-09 6.403E-10 5.380E-10 1.316E-11 2.771E-10

BK(U��1��2V,U��3��4��5��6��7V) 4.361E-04 1.661E-04 2.951E-05 7.747E-05 7.358E-05

�. �����5��6��7|�0:15�||�'���5��6��7|�0:15�!
FBI 2.883E-10 1.195E-10 6.065E-11 4.855E-11 5.690E-12

BK(U��1��2V,U��3��4��5��6��7V) 6.445E-06 1.280E-06 7.000E-07 2.512E-06 1.158E-06

HUANGE WANG ET AL.: A RECURSIVE METHOD FOR APPROXIMATE INFERENCE IN DISCRETE DYNAMIC BAYESIAN NETWORKS USING INTERFACE

JUNCTION TREES 13

forward interfaces. Here, we present the FBI algorithm to
enhance the practical feasibility of approximate inference
at the expense of limited accuracy. Compared with the
benchmark deterministic approximate inference method,
namely the BK algorithm, the FBI algorithm achieves bet-
ter inference accuracy in the following ways: (1) rearrange
nodes beyond the scope of the forward interface into two
interface JTs for forward and backward inference, respec-
tively; (2) provide an automated and optimized solution
to partitioning sophisticated interfaces throughout a re-
cursive inference process. Compared with the benchmark
exact inference method, i.e. Murphy’s interface algorithm,
the FBI algorithm causes a small loss of inference accura-
cy, but it can significantly reduce the space complexity of
inference in DBNs with large forward interfaces, and thus
has great potential for broad applications in practice.

ACKNOWLEDGMENT

This work was supported partly by the Leverhulme Trust
under Grant RPG-2016-118 CAUSAL-DYNAMICS, and
partly by the EPSRC under project EP/P009964/1: PAtient
Managed decision-support using Bayesian networks. The
authors also acknowledge Agena Ltd for software sup-
port.

REFERENCES

[1] L. An, M. Kafai, and B. Bhanu, “Dynamic Bayesian Network for Un-

constrained Face Recognition in Surveillance Camera Networks,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems,

vol. 3, no. 2, pp. 155-164, June 2013.

[2] H.Y. Cheng, C.C. Weng, and Y.Y. Chen, “Vehicle Detection in Aerial

Surveillance Using Dynamic Bayesian Networks,” IEEE transactions

on image processing, vol. 21, no. 4, pp. 2152-2159, Apr. 2011.

[3] J. Frankel, M. Wester, and S. King, “Articulatory Feature Recognition

Using Dynamic Bayesian Networks,” Computer Speech and Language,

vol. 21, no. 4, pp. 620-640, Oct. 2007.

[4] A.V. Nefian, L. Liang, X. Pi, X. Liu, and K. Murphy, “Dynamic Bayesian

Networks for Audio-Visual Speech Recognition,” EURASIP Journal

on Advances in Signal Processing, vol. 2002, no. 11, pp. 1274–1288,

2002.

[5] C. Chen, J. Liang, and X. Zhu, “Gait Recognition Based on Improved

Dynamic Bayesian Networks,” Pattern Recognition, vol. 44, no. 4, pp.

988-995, 2011.

[6] H.I. Suk, B.K. Sin, and S.W. Lee, “Hand Gesture Recognition Based on

Dynamic Bayesian Network Framework,” Pattern recognition, vol. 43,

no. 9, pp. 3059-3072, 2010.

[7] J. Sun, and J. Sun, “A Dynamic Bayesian Network Model for Real-Time

Crash Prediction Using Traffic Speed Conditions Data,” Transportation

Research Part C: Emerging Technologies, vol. 54, pp. 176-186, 2015.

[8] C.M. Queen and C.J. Albers, “Intervention and Causality: Forecasting

Traffic Flows Using a Dynamic Bayesian Network,” Journal of the

American Statistical Association, vol. 104, no. 486, pp. 669-681, Jun.

2009.

[9] J. Schütte, H. Wang, S. Antoniou, A. Jarratt, N.K. Wilson, J. Riepsaame,

F.J. Calero-Nieto, V. Moignard, S. Basilico, S.J. Kinston, R.L. Hannah,

M.C. Chan, S.T. Nürnberg, W.H. Ouwehand, N. Bonzanni, M.F. de

Bruijn, and B. Göttgens, “An Experimentally Validated Network of

Nine Haematopoietic Transcription Factors Reveals Mechanisms of Cell

State Stability,” Elife 5: e11469, Feb. 2016.

[10] S. Eldawlatly, Y. Zhou, R. Jin, and K.G. Oweiss, “On the Use of Dynamic

Bayesian Networks in Reconstructing Functional Neuronal Networks

from Spike Train Ensembles,” Neural computation, vol. 22, no. 1, pp.

158-189, Jan. 2010.

[11] M.A. Van Gerven, B.G. Taal, and P.J. Lucas, “Dynamic Bayesian Net-

works as Prognostic Models for Clinical Patient Management,” Journal

of biomedical informatics, vol. 41, no. 4, pp. 515-529, 2008.

[12] A. Onisko, M.J. Druzdzel, and R.M. Austin, “Application of Dynamic

Bayesian Networks to Cervical Cancer Screening,” Proc. Eleventh Int.

Conf. Artificial Intelligence, pp. 5-14, 2009.

[13] P. Kozlow, N. Abid, and S. Yanushkevich, “Gait Type Analysis Using

Dynamic Bayesian Networks,” Sensors, 18(10), 3329, Oct. 2018,

doi.org/10.3390/s18103329.

[14] R.G. Cowell, P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter, Probabilis-

tic Networks and Expert Systems: Exact Computational Methods for

Bayesian Networks, Springer Science & Business Media, 2006.

[15] K.P. Murphy, “Dynamic Bayesian Networks: Representation, Inference

and Learning,” PhD dissertation, Dept. of Electrical Engineering and

Computer Sciences, University of California, Berkeley, 2002.

[16] T. Bengtsson, P. Bickel, and B. Li, “Curse-of-dimensionality Revisited:

Collapse of the Particle Filter in Very Large Scale Systems,” In Probabil-

ity and statistics: Essays in honor of David A. Freedman, Institute of

Mathematical Statistics, pp. 316-334, 2008.

[17] M. Neil, X. Chen, and N. Fenton, “Optimizing the Calculation of Condi-

tional Probability Tables in Hybrid Bayesian Networks Using Binary

Factorization,” IEEE Trans. on Knowledge and Data Engineering, vol.

24, no. 7, pp. 1306-1312, 2011.

[18] M. Neil, M. Tailor, and D. Marquez, “Inference in Hybrid Bayesian

Networks Using Dynamic Discretization,” Statistics and Computing,

vol. 17, no. 3, pp. 219-233, 2007.

[19] X. Boyen and D. Koller, “Tractable Inference for Complex Stochastic

Processes,” Proc. Fourteenth Ann. Conf. on Uncertainty in Artificial

Intelligence, pp. 33-42, July 1998.

[20] O. Schaudt, R. Schrader, and V. Weil, “On the Separability of Graphs,”

Discrete Mathematics, vol. 313, no. 6, pp. 809-820, 2013.

[21] D. Madigan, J. York, and D. Allard, “Bayesian Graphical Models for

Discrete Data,” International Statistical Review, vol. 63, no. 2, pp. 215-

232, 1995.

[22] P. Giudici and R. Castelo, “Improving Markov Chain Monte Carlo

Model Search for Data Mining,” Machine learning, vol. 50, no. 1-2, pp.

127-158, 2003.

[23] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions,

and the Bayesian Restoration of Images,” IEEE Transactions on pat-

tern analysis and machine intelligence, vol. 6, pp. 721-741, Nov. 1984.

[24] T. Hrycej, “Gibbs Sampling in Bayesian Networks,” Artificial Intelli-

gence, vol. 46, no. 3, pp. 351-363, 1990.

[25] A. Doucet, N. De Freitas, K. Murphy, and S. Russell, “Rao-Blackwellised

Particle Filtering for Dynamic Bayesian Networks,” Proc. Sixteenth

Ann. Conf. on Uncertainty in Artificial Intelligence, pp. 176-183, Jun.

2000.

[26] N.E. Fenton and M. Neil, “Decision Support Software for Probabilistic

Risk Assessment Using Bayesian Networks,” IEEE Software, vol. 31,

no. 2, pp. 21–26, 2014.

[27] K. Murphy, “The Bayes Net Toolbox for Matlab,” Computing science

and statistics, vol. 33, no. 2, pp. 1024-1034, 2001.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Huange Wang received the PhD degree in
applied mathematics and statistics from Wa-
geningen University & Research, the Nether-
lands, in 2017. She is a post-doctoral research
associate in Risk and Information Manage-
ment research group, at the School of Elec-
tronic Engineering and Computer Science,
Queen Mary University of London. Her re-
search interest lies in the development of
probabilistic graphical models in machine

learning, automated inference, and decision support.

Martin Neil is a professor of Computer Sci-
ence and Statistics at the School of Electronic
Engineering and Computer Science, Queen
Mary University of London. He is also a Direc-
tor of Agena, a company that develops Bayes-
ian probabilistic reasoning software and ap-
plies it to risky and uncertain problems.

Norman Fenton is a professor of Risk Infor-
mation Management at the School of Electron-
ic Engineering and Computer Science, Queen
Mary University of London. He is also a Direc-
tor of Agena, a company that develops Bayes-
ian probabilistic reasoning software and ap-
plies it to risky and uncertain problems.

