

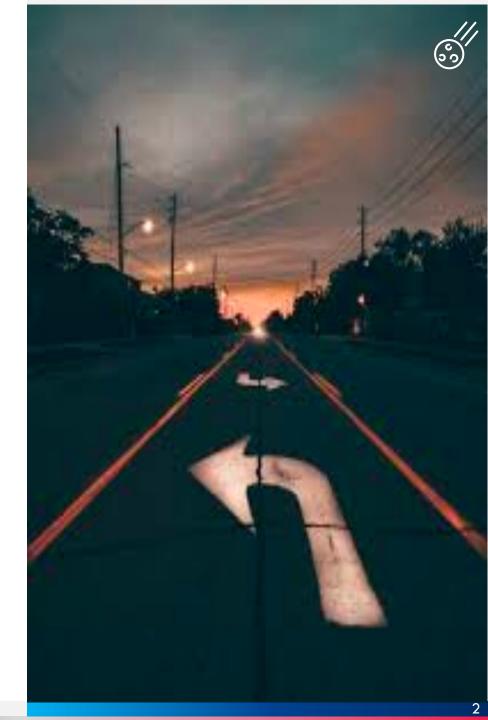
Challenges in Health Informatics: Knowledge, Al and Data Science Perspectives

HR

Seminar Roadmap

Session Outline

- Presenter Introductions
- Introduction & background
- Research Areas: Our work in Health Informatics



Presenter Introductions

00

Dr Kuda Dube Dr Scott McLachlan Dr Evangelia Kyrimi

Introduction and background

- 4

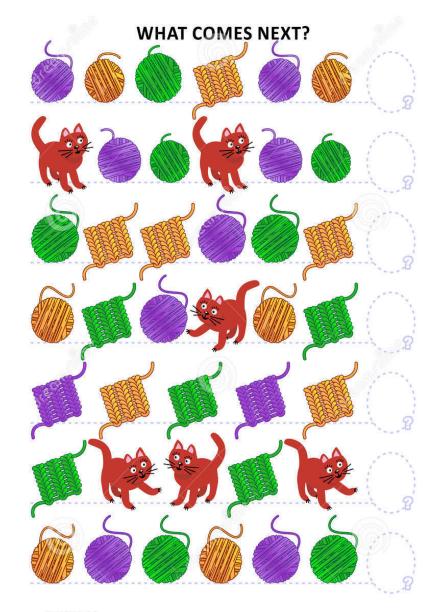
Pattern Recognition

The Problem

- Humans are good at pattern recognition
- Many approaches to Machine Learning in healthcare are based on simple pattern recognition
- Pattern recognition can easily identify when something is or isn't the desired target

But...

We need to go beyond simple pattern recognition in order to realise the goals of Learning Health Systems and Precision Medicine



ANSWER: (from top to bottom) green clew; cat; yellow sample; purple clew; green sample; cat looking left; yellow clew.

Health Data

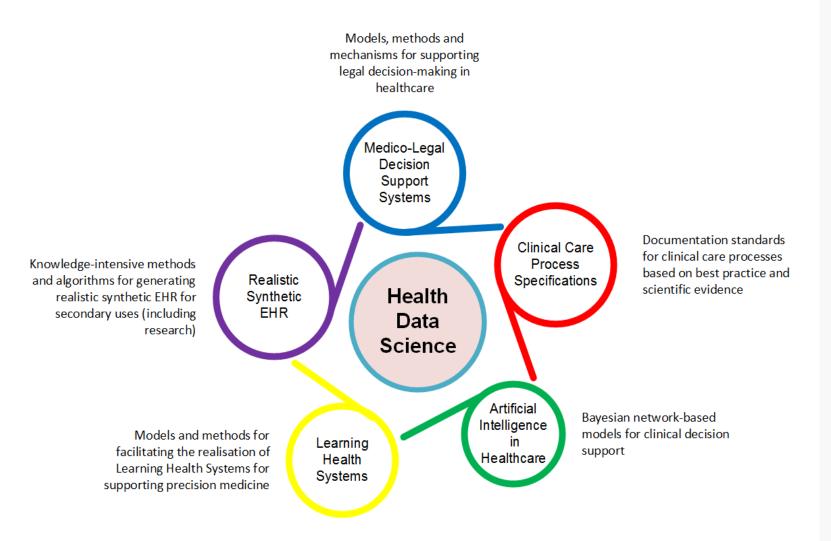
The Health Record

- Predate the personal computer
- Most personal and highly sensitive type of data: privacy laws and ethical issues
- Adoption of Electronic Healthcare Record (EHR) has been slow
- Secondary use of EHR for research and development is still problematic
- EHRs still have many unresolved issues
- Opportunities to capture and link other data, such as physiometric data from sensors through the Medical Internet of Things (MIoT) paradigm, exist but mostly remain unexplored

While EHR continue to lack standardisation in form, function and how the data is captured and stored, it is difficult for them to support Learning Health Systems and Precision Medicine

٠ ب ک

Our Health Data Science Related Research



Research Areas

Dr Kuda Dube

Realistic Synthetic Electronic Health Records

Knowledge-intensive methods and algorithms for generating the "realistic synthetic" EHR

Key research challenges

- Generation of synthetic patient avatars for use as control cohorts in development and simulation;
- Generation of "realistic" synthetic EHR: birth-to-grave, birth-tocurrent age
- Validation of "realism" in synthetic EHR

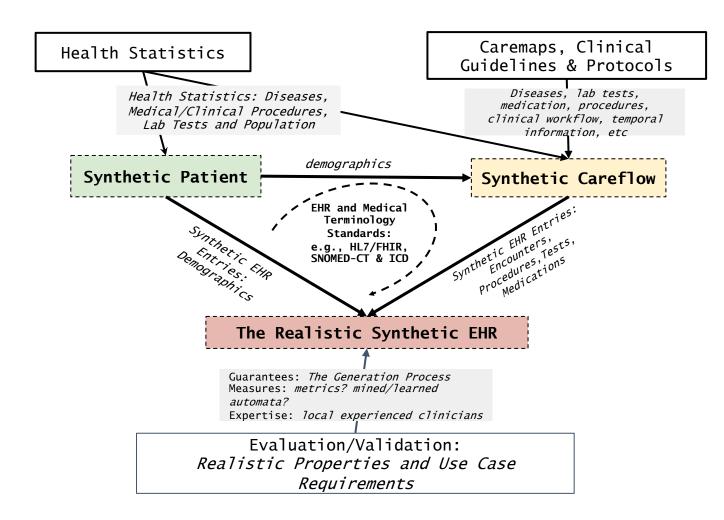
Work Done to Date

- The CoMSER Method for generating the RS-HER
- The ATEN Framework for realism in RS-EHR
- Contributed to Synthea with Mitre Corporation, State of Massachusetts, USA



The Realistic Synthetic Patient and EHR

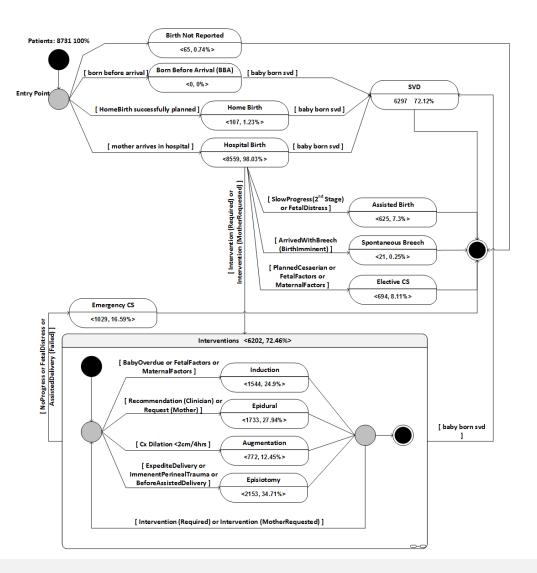
Knowledge-intensive Approach and Method



Practical computational challenge: Generate a synthetic patient population and its synthetic EHR equivalents to those of the entire state of Massachusetts.

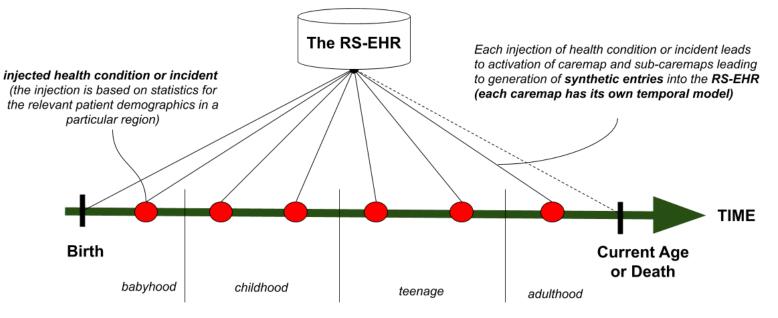
The RS-EHR: The CoMSER Proof-of-Concepts System

The Synthetic EHR for the Labour and Births Events



The RS-EHR: Current and ongoing challenge

Computational challenges for generating **birth-to-present** or **birth-to-current-age** RS-EHR



lifetime phases for the synthetic patient

(these phases should conform to phases found in national/international health statistics)

Issues to grapple with:

- 1. Complex medical reasoning, logic and variables;
- 2. Data and knowledge-intensive non-existent required statistical data;
- 3. Computationally intensive as required population increase;
- 4. Ensuring "realism" in result RS-EHR

Language Technologies for Healthcare

Research Challenges

- Extend use of NLP tools for indigenous languages to the healthcare setting
- Development of new language models, algorithms and NLP tools that will exploit these to support Bantu languages of Southern Africa and similar languages around the world

Patient-clinician encounters in non-English language contexts:

The case for adaptive agglutinative languages of Southern Africa

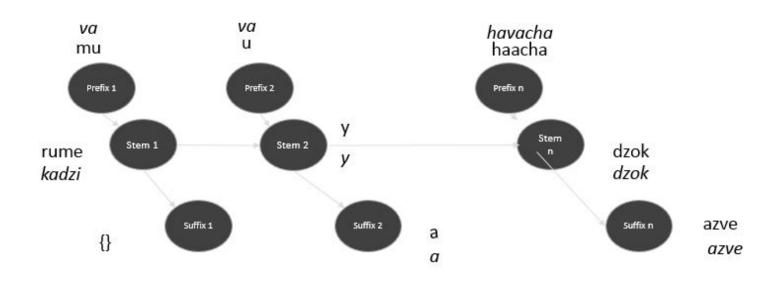
Language Technologies for Healthcare

The case for Adaptive Agglutinative Languages of Southern Africa (Bantu)

- Communication and Language: patient-dinician encounter and the EHR;
- Problem: Existing language models and computational tools cannot be used to perform even simple tasks like checking spelling and grammatical analysis.
- Example consequence: In Zimbabwe, dinicians speak in Shona to patients, but the Health Record is in English

The case for adaptive agglutinative languages of Southern Africa

Example: Simple Shona Sentence and Words

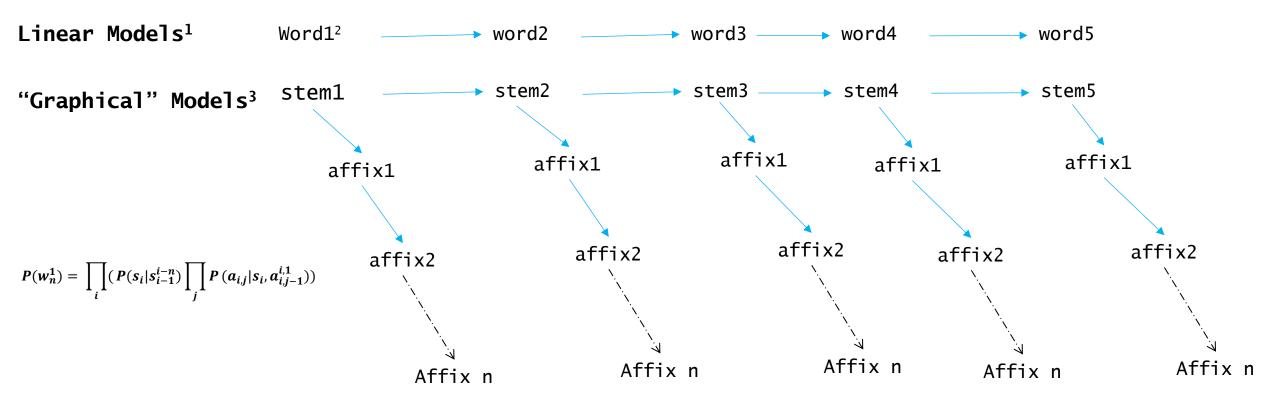


Murume uya haachadzokazve Vakadzi vaya havachadzokazve

Spell-checking, syntactic and semantic analysis is not easy and require new methods to achieve functional accuracy.

Complex syntactic composition of Shona words

Main Approaches to Language Models



odels⁴ Various architectures - mainly RNN, more specifically LSTMs

1: Most common definition of LMs. See Jurasky and Martin, 2018, for example

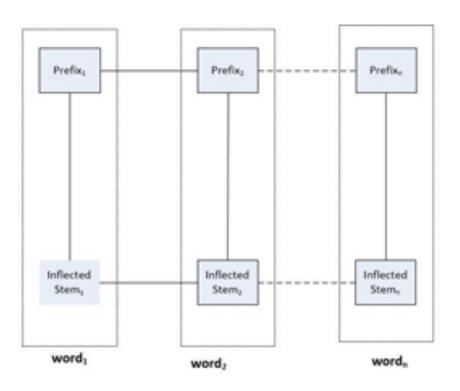
2: words can be replaced by syllables or characters in this model

3: See Xuehelaiti et al, 2013 for details of this approach

4. See Dengliang Shi, 2017

Our early experiments: N-gram methods further improved by smoothing and interpolation

Way Forward



Proposed Language Model:

• Instead of modelling Shona language sentences at the word level, we do it at the sub-word level.

Word Analysis:

- Word as a composite of a prefix and an inflected stem (stem + sufixes),
- Inflected stem is the root and the derivational suffix.

Knowledge Incorporation

Challenges from how knowledge is incorporated into computational models

Even well-engineered solution models incorporate knowledge, here is simple example:

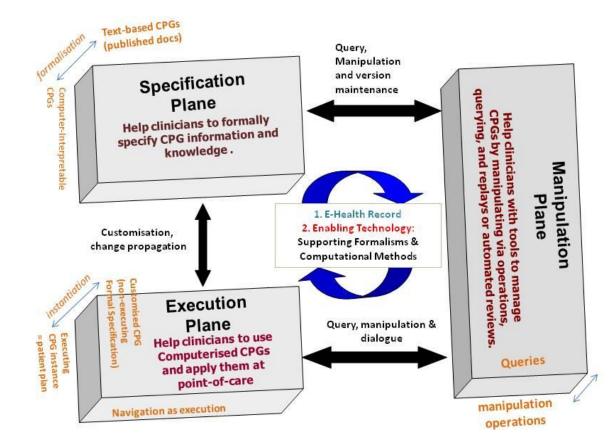
Simple Example: Generic sorting algorithmic processes incorporate knowledge about objects to be sorted: precedence relations

Complex Example: Health monitoring system that generate alerts incorporates clinical care and medical knowledge about managing the condition being monitored and the patient.

Key challenges:

- 1. To what extent can we examine/query and modify/update the knowledge that is incorporated in Health IT?
- 2. To what extent can we customize the resulting Health IT to suit different patients, circumstances, cultures, and regions of the world?

Knowledge Incorporation



Conceptual framework for our work on:

- 1. Food, nutrition and lifestyle decision-support
- 2. Clinical guideline modelling and computerisation
- 3. Clinical Care Process Specifications (Dr Scott McLachlan)

Research Areas

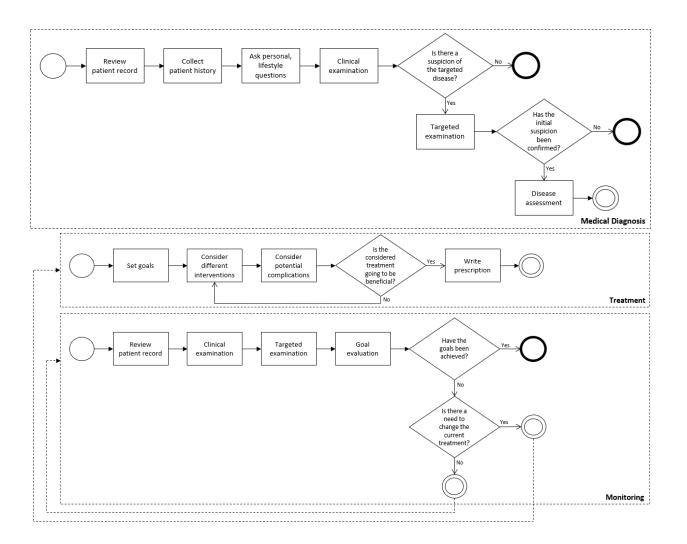
Dr Scott McLachlan

Clinical Care Process Specifications (CCPS)

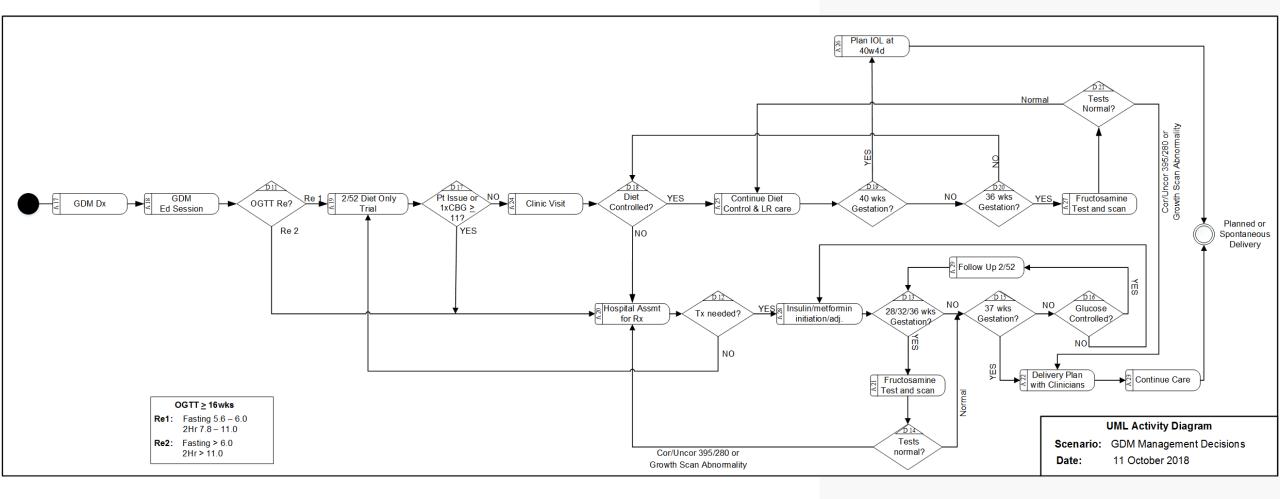
Existing Work

- 1. Taxonomy for CCPS
- 2. TaSC approach for standardisation of development, structure and content of clinical caremaps

Caremaps with Decision Points



Gestational Diabetes Mellitus (Patient Management)



Clinical Care Process Specifications (CCPS)

Future Work

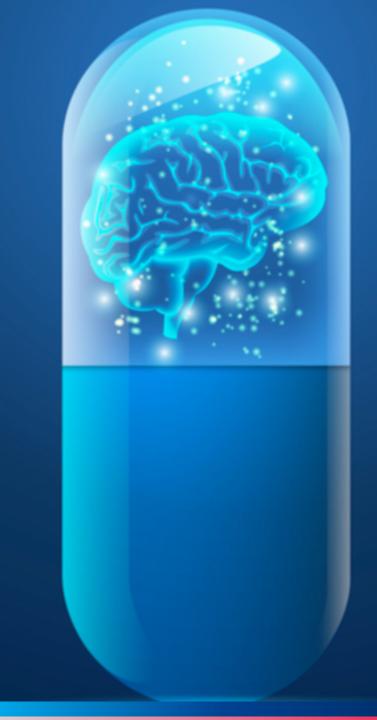
Investigation and/or development of:

- 1. Standardisation approaches for other CCPS;
- 2. A validation and evaluation approach to ensure standards conformity for CCPS (and later, EHR);

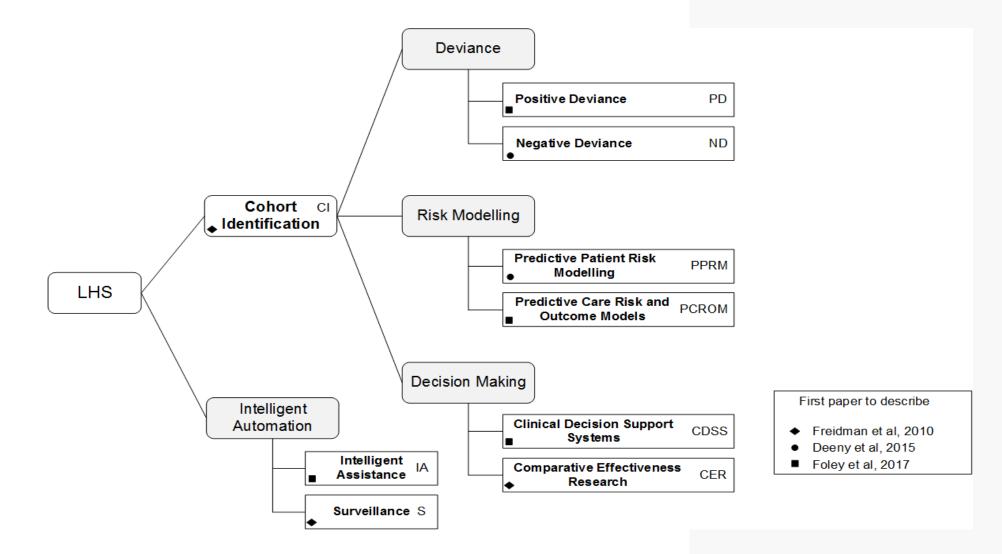
Learning Health Systems (LHS)

Existing Work

- 1. The LHS Community Awareness Challenge
- 2. The Heimdall Taxonomy and Framework for LHS
- 3. The ITPOSMO-BBF model for evaluating barriers, benefits and facilitating factors (adoption) of LHS



Taxonomy for Learning Health Systems



Learning Health Systems (LHS)

Future Work

Investigation and/or development of:

- 1. Existing and potential methodologies for developing LHS
- 2. Near- and real-time LHS tools/mobile apps
- 3. Human and non-human factors acting as barriers or facilitating factors
- 4. Solutions for combining smart sensors and Al (e.g. smart clothing for medical monitoring of astronauts and military personnel)

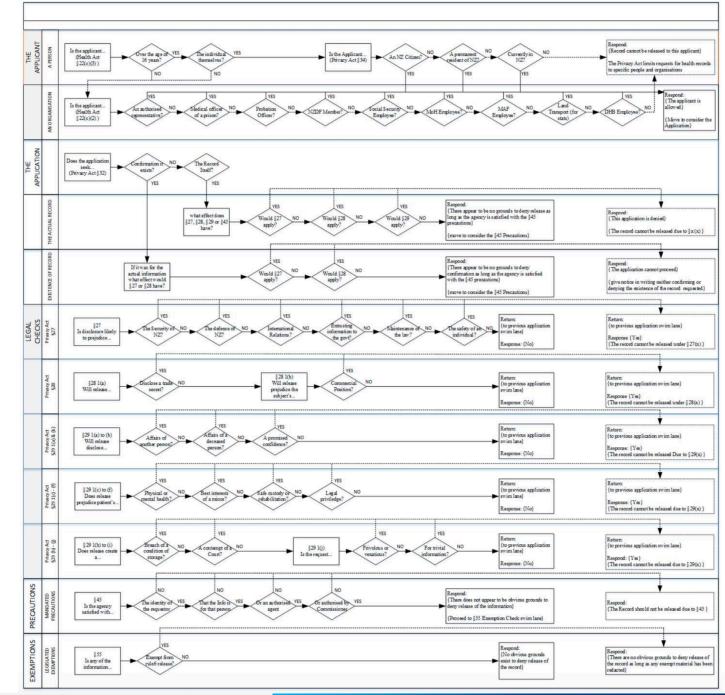
Medico-Legal Decision Support Systems (MLDSS)

Completed Work

- 1. Request for Access Tool (RAT)
- 2. Medical negligence litigation prediction tool
- 3. Consent models for use in secondary use research using RCHD

RAT Tool – Legal Decision Flowchart

Country	Level 1: The Applicant	Level 2: The Application	Level 3: The Laws	Level 4: Precautions, Abstractions, Exemptions and Redactions
Australia - NSW	HRIP 2002 §7-8, Health Privacy Principle: 7,14	HRIP 2002 §28 Health Privacy Principle: 6	HRIP 2002 §29-30 Health Privacy Principle: 11	HRIP 2002 §31 HRIP 2002 §17
Australia - ACT)	HRPAA 1997 §12 (1) & (2)	HRPAA 1997 §13 (c)	HRPAA 1997 §14-16	HRPAA 1997 §13B (3) HRPAA 1997 §17
Canada - Manitoba	PHIA §5(1), §22(2), §23(1)	PHIA §7, §5(3)	PHIA 2013, FIPPA, PHIPA 2004	PHIA §18(2)b PHIA §9
UK	DPA 1998 §II(7)	DPA 1998 §II(7)(2), AHRA §3(2)	AHRA 1990 §5, DPA 1988, MCA 2005	PA 1998 §II(6-8) AHRA §4, DPA 1998 §III
USA	HIPAA §160 & §164.524 Access of individuals to protected health information.	HIPAA §160 & §164	HIPAA §160 & §164	HIPAA §160 & §164
New Zealand	Health Act §22	Privacy Act §32	Privacy Act §27-29	Privacy Act §45 & 55



Medico-Legal Decision Support Systems (MLDSS)

Future Work

Investigation and/or development of:

- 1. Flexible ongoing consent approaches
- 2. Integration of consent collection and reporting
- 3. Automatic extraction, aggregation, anonymisation/pseudonymisation and knowledge extraction methods

Research Areas

Dr Evangelia Kyrimi

Artificial Intelligence in Healthcare

Outline

- 1. Need for causal models
- 2. Existing work on Al in healthcare
- 3. Future directions

Artificial Intelligence in Healthcare

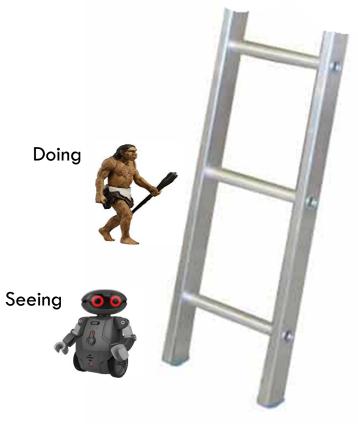
Need for causal models

Seeing



Artificial Intelligence in Healthcare

Need for causal models

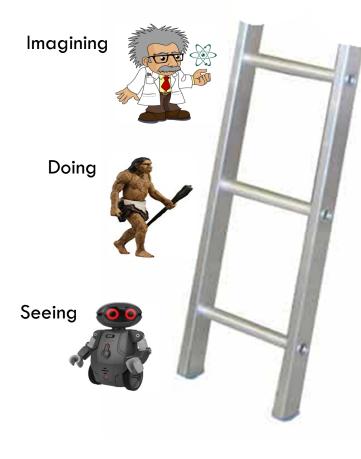


Intervention: "If I take drug x, will it stop my headache?"

Association: "From trials data is drug x effective at stopping headaches?"

Artificial Intelligence in Healthcare

Need for causal models



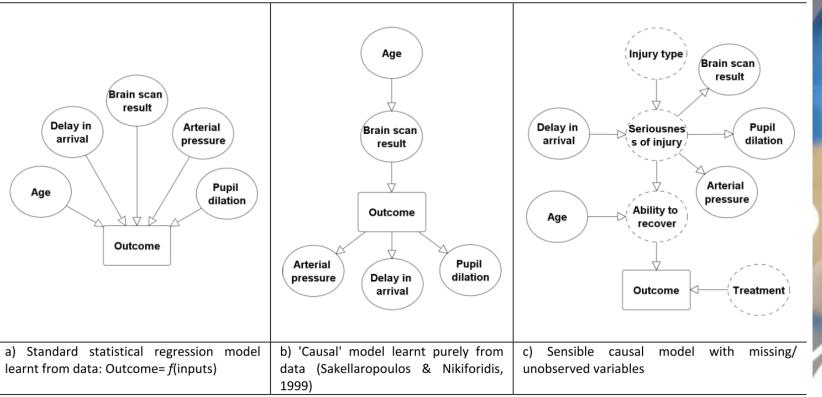
Counterfactuals: "If I hadn't taken drug x, would my headache have stopped?"

Intervention: "If I take drug x, will it stop my headache?"

Association: "From trials data is drug x effective at stopping headaches?"

Artificial Intelligence in Healthcare

Need for causal models



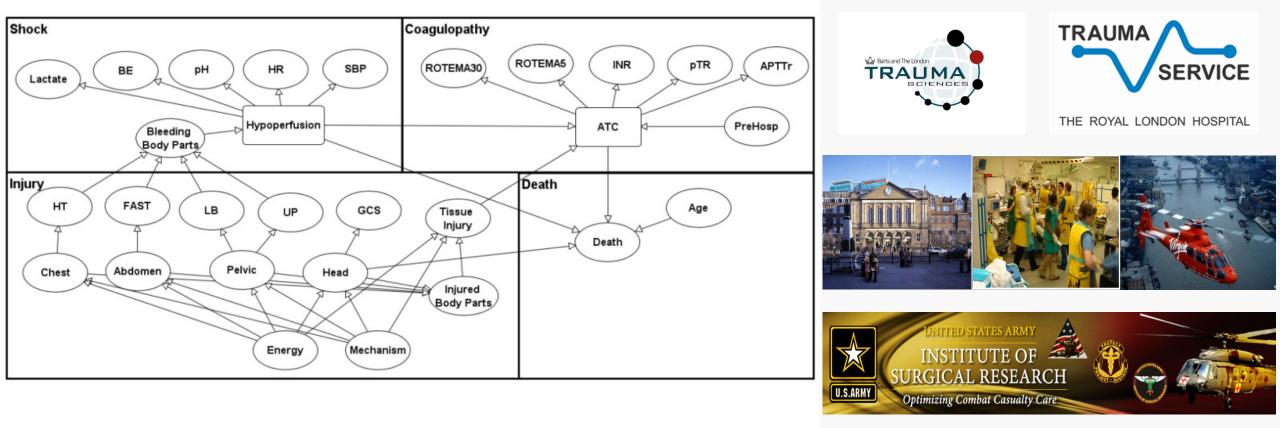
Artificial Intelligence in Healthcare

Trauma care

- RIM Group
- The Royal London Hospital
- US Army Inistitute of Surgical Research

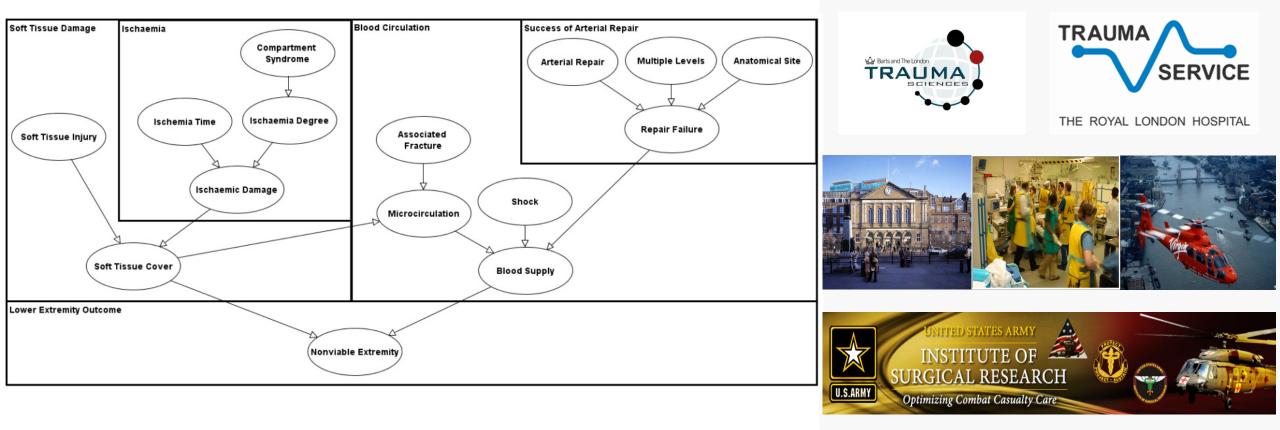
Artificial Intelligence in Healthcare

Existing work - Trauma care



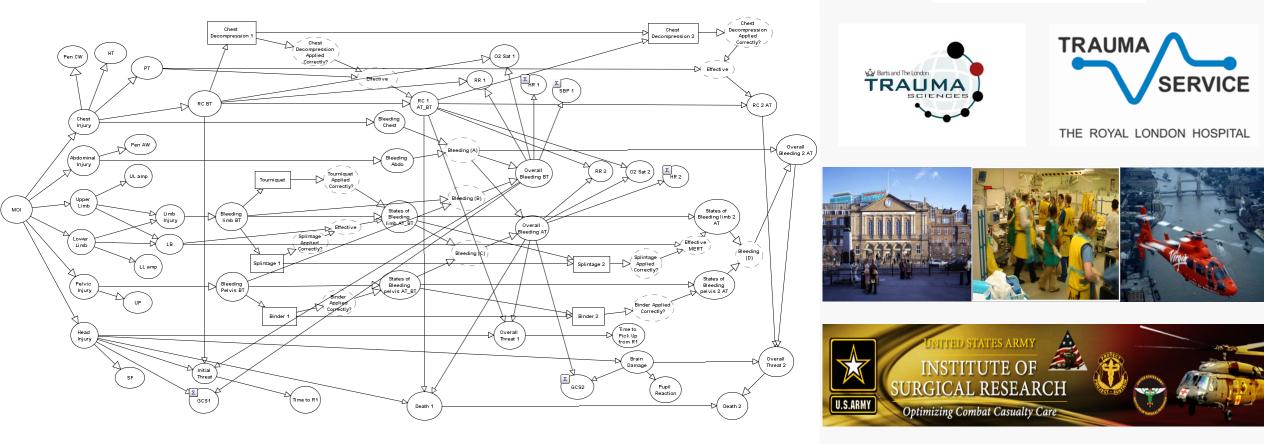
Artificial Intelligence in Healthcare

Existing work - Trauma care



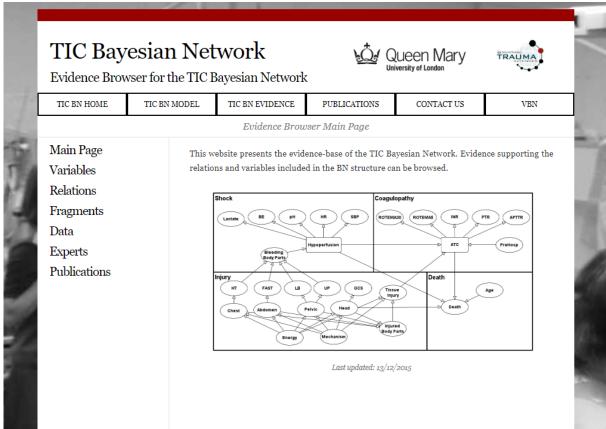
Artificial Intelligence in Healthcare

Existing work - Trauma care



Artificial Intelligence in Healthcare

Existing work - Trauma care (www.traumamodel.com)



Å© 2019 Risk and Information Management (RIM) Research Group, Queen Mary, University of London

Artificial Intelligence in Healthcare

Existing work - Trauma care

		NETWO	ç	University	en Mary	TRAUMA	
IC BN HOME	TIC BN MODEL	TIC BN EVIDENC	PUBLICATIO	NS CO	NTACT US	VBN	
			TIC BN				
В	ackground Inf	ormation		Primar	y Survey		
Mechanism Injury	of Energy of Inj	ry Fluid Volume Transfused	Haemothorax	Long Bone Injury	Unstable Pelvis	FAST Scan	
Penetrating	Itigh		• Yes	○ Yes	○ Yes	Positive	
Blunt	Low	500	○ No	No	No	Negative	
 Unknown 	Unknown		O Unknown	Unknown	Unknown	Unknown	
Vitals				Arterial Blood Gas			
Heart Rate	Systolic Blood Glas Pressure	gow Coma Score	ure Lactate	Base	Excess	рН	
BPM	mmHg 10	38	mmol/L	mmol		7.5	

© 2019 Risk and Information Management (RIM) Research Group, Queen Mary, University of London

TIC BN is powered by asena

Artificial Intelligence in Healthcare

	ESIAN N del for trauma in				en Mary		
TIC BN HOME	TIC BN MODEL	TIC BN EVIDENCE	PUBLICATIO	NS CO	NTACT US	VBI	
		TIC	CBN				
Ba	Background Information			Primary Survey Results			
Mechanism o Injury	of Energy of Injury	Fluid Volume Transfused	Haemothorax	Long Bone Injury	Unstable Pelvis	FAST Scar	
 Penetrating Blunt 	 High Low 	500	• Yes • No	⊙ Yes ● No	○ Yes● No	PositiveNegative	
Unknown	Unknown	500	O Unknown	O Unknown	Unknown	Unknown	
	Vitals			Arterial	Blood Gas		
Heart Rate	Heart Rate Systolic Blood Glasgow Coma Pressure Score		Lactate	Base	Excess	pH	
BPM	mmHg 10	°C	mmol/L	mmol		7.5	
TIC Risk 100 75 50 25 0	3000%	12.77%	TIC Risk 16 12 8 4 0	% (Relative Scale) Baseline TIC Risk: 9 9.66% Baseline	66% 12.77%		

Artificial Intelligence in Healthcare

Future work – COMBAT-AID project

- 1. Refine and validate existing models in military environment
- 2. Develop an overflight triage model
- 3. Investigate the interpretability and usability of the developed models

US Department of Defense awards £1m to Queen Mary University of London for AI research on treating injured soldiers

Medical care of injured soldiers could improve with new Artificial Intelligence (AI) tools designed for the battlefield and the hospital following a grant from the US Department of Defense for research at Queen Mary University of London.

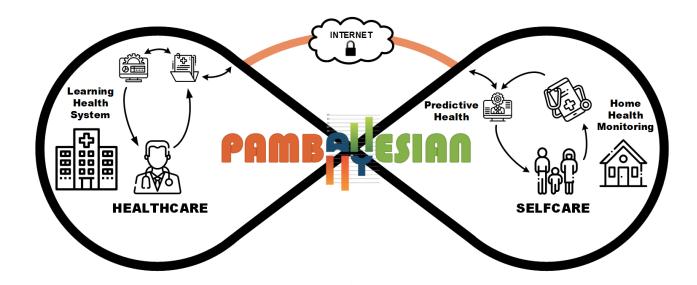
1 October 2019

У Tweet

The US Department of Defense has awarded the Centre for Trauma Sciences (C4TS) at Queen Mary a \$1.2 million (£976.500) grant to develop AI tools that could help save the lives of badly injured soldiers.

It is aimed at developing and validating a suite of accurate prediction models and Clinical Decision Support (CDS) tools that clinicians can use to treat wounded soldiers on the battlefield. travelling to

Artificial Intelligence in Healthcare



- Create new generation of intelligent medical decision support systems for direct patient use with real-time monitoring for chronic conditions
- Increase patient independence and decrease reliance on direct consultation
- Allow more autonomous care at home and reduce associated health care cost

Artificial Intelligence in Healthcare

Existing Work – PAMBAYESIAN project

1. Scoping review of BNs in Healthcare (6 papers)

Artificial Intelligence in Healthcare

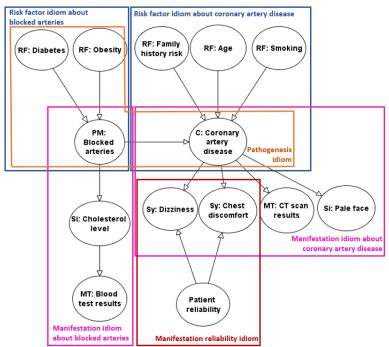
- 1. Scoping review of BNs in Healthcare (6 papers)
- 2. Standardisation of the process for eliciting expert knowledge using caremaps

Artificial Intelligence in Healthcare

- 1. Scoping review of BNs in Healthcare (6 papers)
- 2. Standardisation of the process for eliciting expert knowledge using caremaps
- 3. Standardise the process of developing medical BNs using an idiom based approach

Artificial Intelligence in Healthcare

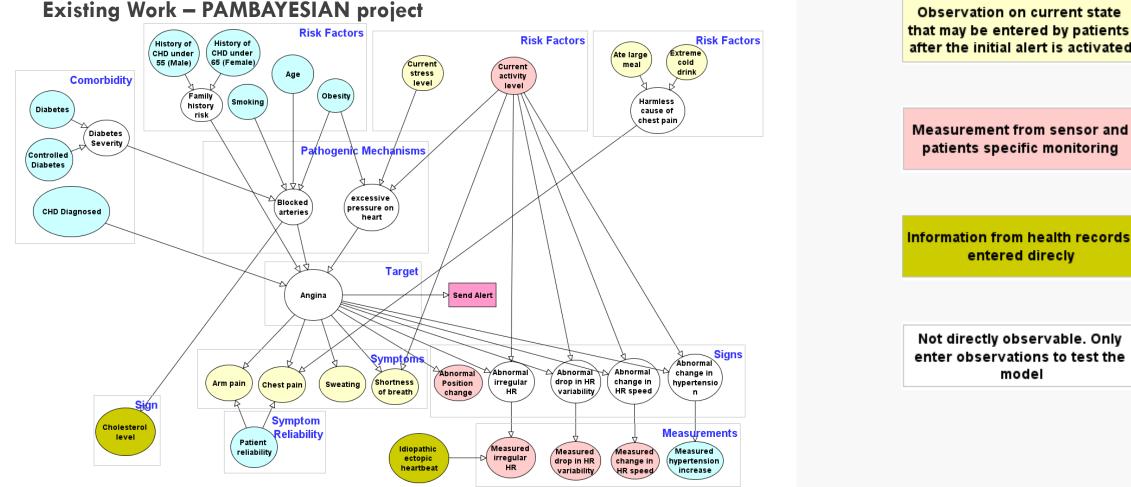
- 1. Scoping review of BNs in Healthcare (6 papers)
- 2. Standardisation of the process for eliciting expert knowledge using caremaps
- 3. Standardise the process of developing medical BNs using an idiom based approach



Artificial Intelligence in Healthcare

- 1. Scoping review of BNs in Healthcare (6 papers)
- 2. Standardisation of the process for eliciting expert knowledge using caremaps
- 3. Standardise the process of developing medical BNs using an idiom based approach
- 4. Web-based application using BNs for Diagnosis and management of chronic conditions (GDM, RA)

Artificial Intelligence in Healthcare



Background factor entered once by clinicians at the first clinic visit and potentially updated in a later visit

Observation on current state that may be entered by patients after the initial alert is activated

Measurement from sensor and patients specific monitoring

52

Artificial Intelligence in Healthcare

Existing Work – PAMBAYESIAN project

https://cardipro.mclachlandigital.com

Username: testuser

Password: password

CardiPro

Projects

Create and manage projects

Go back

Projects

The following are projects you own or are collaborating on

Create Project

 Projects
 Collaborators

 Project
 Description
 Collaborators

 Lina's Trauma Model
 Lina's Trauma Model
 admin, haydn, testuser

 CardiPro Angina v6
 CardiPro Angina v6
 admin, haydn, testuser

Home Projects Admin Logout (testuser)

Artificial Intelligence in Healthcare

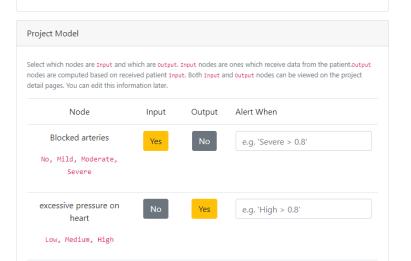
Existing Work – PAMBAYESIAN project

CardiPro

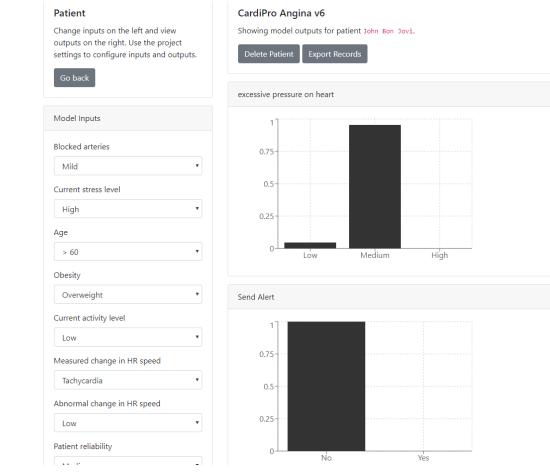
Home	Projects	Admin	Logout (testuser)
------	----------	-------	-------------------

Project Settings						
Update project information and settings						
Go back	Save					

Project Details	
Name	
CardiPro Angina v6	
Description	
CardiPro Angina v6	
Nodel Path	
models/cardiology_proper.v6.cmp	



Artificial Intelligence in Healthcare



Artificial Intelligence in Healthcare

Future Work

- 1. Expedited methods for development of medical BNs using medical idioms, ontologies and caremaps;
- 2. Abstractions for modelling of chronic diseases;
- 3. Methods to enhance the adoption of BNs in clinical practice.

Thank you

Kudakwashe Dube

K.Dube@massey.ac.nz

Scott McLachlan

🖂 s.mclachlan@qmul.ac.uk

Evangelia Kyrimi

🖂 e.kyrimi@qmul.ac.uk

