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Abstract—Computational models that need to incorporate 
domain knowledge for realistic solutions to problems often lead 
to technologies that get transferred to developing countries. The 
support for managing the knowledge incorporated into these 
technologies is important for customisation to suit local 
conditions. This work investigates this problem through the 
challenge of incorporating food and nutrition therapy guidelines 
(FNTG) into ICT-based solution models for the meal planning 
problem (MPP) for HIV/AIDS patients in developing countries. 
An experiment is undertaken to demonstrate the limitations of 
existing approaches and framework is investigated for 
manageable incorporation of knowledge into solution models. 
The paper contributes a clear understanding of, and directions 
for addressing, the problem of support for managing the 
knowledge incorporated into solutions models to support 
customisability of technologies. The significance of this 
contribution is that solutions will allow resulting technologies to 
be customised for use in different global contexts. 

Keywords—Appropriate Technologies, Knowledge Management, 
Meal Planning Problem, Genetic Algorithms, Knowledge 
Engineering, Food and Nutrition Therapy, HIV/AIDS, Global 
Health Technologies 

I. INTRODUCTION 
Ensuring that the domain knowledge being incorporated 

into computational models is manageable is a challenge which 
requires supporting customisation of the knowledge. This 
would allow any resulting technology to be customised and 
used in different global contexts. All computational solution 
models require domain knowledge to produce realistic 
solutions [1, 2]. Simple problems are solved using little 
domain knowledge while hard problems require more 
comprehensive domain knowledge [3, 4]. For optimisation 
problem-solving methods, domain knowledge is often 
incorporated in computational models used in their heuristics 
for coping with the computational complexity of hard 
problems [5, 6]. The knowledge must first be formalised into 
computer interpretable form before it can be incorporated for 
use within a computational model.  This requires consideration 
of the management in order for the resulting technology to be 
customisable. To be manageable, one should be able to 
manipulate the incorporated knowledge through defined and 
supported operations. This would allow customisation of the 
resulting technology to suit different global circumstances and 
enables technology transfer. 

In this paper, the research problem under investigation is 
the manageable incorporation of domain knowledge into 
computational solution models. The objectives of the paper are 
to show that: (1) existing computational models for solving the 

Meal Planning Problem (MPP) produce unrealistic solutions 
without incorporating food and nutrition knowledge; (2) 
existing computational models do not have inherent or natural 
ways for supporting manageable incorporation of knowledge; 
and, (3) knowledge incorporated into computational models 
using existing methods is generally difficult to manage, 
making them hard to use in different global contexts. 

To investigate the research problem, the paper uses the 
MPP in the context of treating a clinical condition, which 
requires Food and Nutrition Therapy Guidelines (FNTG) as 
the domain knowledge. The FNTG give clinicians, dietitians, 
nutritionists and caregiver’s concise evidence-based 
instructions on optimal food and nutrition therapy 
administration (FNTA). FNTGs improve the quality and 
consistency of FNTA because they offer recommendations on 
how to proceed according to best practice and alert domain 
experts when a wrong practice has been followed [7]. 
Formalisation of FNTGs is a challenging problem that 
requires at least two areas of expertise – the domain expert: a 
nutritionist, and a knowledge engineer. The domain expert 
must correctly interpret the FNTG for the knowledge engineer 
who then formalises the knowledge into computer 
interpretable format [7].  

As part of attaining its objectives
this paper investigates a framework for manageable 
incorporation of knowledge into computational models. The 
paper also presents a new understanding on the management 
challenges for knowledge incorporation into computational 
models. The framework and management challenges are 
evaluated through its application to assess existing literature 
and through an experiment applying the genetic algorithm 
(GA) to the MPP.  

This paper is organised as follows: first, the relevant 
literature is reviewed; second, the MPP and food and nutrition 
therapy guidelines are defined. After that, the theoretical 
contributions are presented before the design of experiments 
is outlined. This is followed by presentation and examination 
of the results and discussion of the significance, implications, 
and future work are discussed before the paper is concluded. 

II. THE CHALLENGE OF SUPPORTING FOOD AND NUTRITION 
THERAPY FOR HIV/AIDS PATIENTS IN SELF-MANAGED 
AND HOME-BASED CARE IN DEVELOPING COUNTRIES 

HIV/AIDS and poor nutrition are inextricably linked in a 
vicious cycle. Poor nutrition and malnourishment increases 
the risk of transmission, and in turn the HIV infection attacks 
the immune system and interferes with nutrient intake, 
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absorption and utilisation. [8,9] In this way HIV exacerbates 
malnutrition. Global research has shown that evidence-based 
nutritional interventions that aim to increase energy and 
protein intake for the HIV patient, may help to mitigate their 
vulnerability to weight loss and wasting away. [8,9] 

Food and nutrition therapy administration (FNTA) is 
important and integral in the management of HIV/AIDS 
patients in both self and managed care [10, 11], especially in 
Developing Countries where weight loss is widespread due to 
malnutrition [12]. According to Koethe et al [13] and Martinez 
et al [14], in Sub-Saharan Africa and Honduras, there are high 
death rates and low health outcomes in HIV/AIDS patients 
who start anti-retroviral therapy (ART) with low body mass 
index (BMI), which mandates FNTA under severe personal 
and organisational resource limitations. Further to this, Cark 
and Cress [15] point out that FNTA should be personalised in 
order to be effective for HIV/AIDS patients, which requires 
any appropriate technologies to support customisation of 
incorporated knowledge. The major challenge faced by 
HIV/AIDS patients in developing regions is the combination 
of the disease, poverty, hunger and the resource limited 
environment [16]. Furthermore, lack of food and nutrition is 
strongly correlated to mortality and adherence to treatment 
therapies [14]. 

It is well known that a large number of clinical tests, signs 
and symptoms must be assessed in order to diagnose that a 
HIV/AIDS patient has a nutritional deficit requiring therapy 
and then to devise the most appropriate treatment strategy for 
supporting that patient's needs. [17] There is a recognised need 
for decision support tools that can support the diagnosis, 
monitoring and treatment strategies. [17, 18] In developing 
countries, mobile ICT-based FNTA tools are important in 
alleviating the challenges in the tasks of therapy 
personalisation, managing and monitoring patients under the 
therapy programmes in resource limited settings.  

This paper is part of ongoing work to create a technological 
foundation for mobile ICT-based tools for HIV/AIDS 
Nutrition Therapy in developing countries with a focus on 
facilitating transfer of technologies with knowledge 
components that can be customised to suit both the local 
environment and the patient. This is expected to result in 
people living with HIV/AIDS easily, quickly and cost 
effectively accessing information about food and nutrition 
therapy programmes through mobile devices thereby 
improving their health. 

III. THE MEAL PLANNING PROBLEM AND FOOD AND 
NUTRITION THERAPY GUIDELINES 

The MPP is a multi-objective and multi-constrained 
optimisation problem that is often solved by using 
computational models from the domain of evolutionary 
computation such as the GA. Solving the MPP involves 
designing a set of meals from food ingredients of different 
nutritional values. The MPP is traditionally recognised as an 
intractable problem and guideline knowledge is difficult to 
formalise and incorporate [19]. The classic MPP is modelled 
as the cost minimisation diet problem [20], often defined 
mathematically as a Linear Programming (LP) problem [21] 
and a multi-objective optimisation problem [22]. Therapeutic 
meal planning needs to consider national and international 
FNTG. Most computational solution models for the MPP 
generally do not inherently support incorporation and 
manipulation of knowledge in the form of FNTG.  

TABLE I.  EXTRACT OF NUTRIENT RECOMMENDATIONS (NATIONAL 
ACADEMY OF SCIENCES) 
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Infants 
       

0–6 mo 0.7* 60* ND 31* 4.4* 0.5* 9.1* 
7–12 mo 0.8* 95* ND 30* 4.6* 0.5* 11+ 
Children 

       

1–3 y 1.3* 130 19* NDc 7* 0.7* 13 
4–8 y 1.7* 130 25* ND 10* 0.9* 19 

Nutrient recommendations are produced by nutrition 
experts as sets of evidence-based standards that define the 
energy and nutrient recommendations for health. Table I 
shows an extract from a nutrient recommendation [23] used to 
plan and assess the nutrient intakes of healthy people. 
Recommendations differ by populations, so they are classified 
into groupings by gender, age group, and life-stage (for 
example, pregnancy, lactation).  

Food and Nutrition Therapy Guidelines (FNTG) generally 
consist of a list of goals to address diet related health problems 
and are often expressed as statements promoting change from 
the current average national diet, for example; “choose and/or 
prepare foods that are low in salt”. FTNG often include 
physical activity and exercise recommendations. FNTGs are 
also a type of Clinical Practice Guidelines (CPGs), which are 
important tools for improving outcomes in preventative, 
curative and, therapeutic care [23, 24].  

The work in [7] describes active and passive approaches to 
dissemination of CPGs. The passive approach involves 
publishing guidelines in journals. Weaknesses of this 
approach are: (1) Practitioners might not be aware of the 
existence of the guideline; (2) Those that are might not be able 
to locate or use them; and (3) The complexity of some FNTGs 
render their use very difficult in the clinical setting. For 
example; the guideline from which Table 1 was extracted from 
a larger version that spans more than 400 pages. The active 
and effective approach incorporates guideline knowledge into 
decision support systems (DSS) [7]. Formalisation of FNTGs 
into computer interpretable format makes this possible [25]. 

IV. RELATED WORK 
Few works investigate manageable incorporation of 

knowledge in computational models. In the area of the 
computerization of clinical practice guidelines (CPG), a 
form of evidence-based knowledge incorporated into clinical 
care process technologies, one of the authors of this paper 
introduced the management/manipulation plane into the 
SpEM Framework for managing computerized CPG [25, 26]. 
Webber and Wu [27] presents a framework for knowledge 
management defining four knowledge operations: create, 
understand, distribute and reuse, which operate at process 
level and require further validation in practice. The operations 
do not manipulate granular elements of the incorporated 
knowledge. Furthermore, the knowledge being incorporated is 
not highly targeted, that is, specialised knowledge about 
specific diseases or patients. 

 Managing knowledge incorporated in evolutionary 
computational models has been recognized as a challenge 
worthy of investigation. [28] presents an approach supporting 
only two operations: share and create. In [29], there is a 
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proposal for a cultural algorithm in which members of the 
population acquired, encoded and stored knowledge in a way 
which allowed knowledge sharing by all members of a 
population. In [30] there is proposal for a Case-Initialized GA 
for knowledge extraction and incorporation in which new 
knowledge could be created, retrieved and updated. Also, an 
approach to knowledge incorporation into GAs which only 
allows for creation of knowledge and application of the 
knowledge-based mutation operator was proposed in [31]. 
Generally, in GA, knowledge is incorporated in the fitness 
function, initialisation process and genetic operators [32].  [33] 
incorporates knowledge in representation, population 
initialisation, recombination and mutation, selection and 
reproduction and fitness evaluations. Comparable methods are 
found in [34-36], with the latter standing out in that it has 
knowledge-based initialisation, crossover mutation and 
selection as methods of knowledge incorporation. All these 
approaches propose schemes for managing incorporated 
knowledge that are tightly integrated with the model and hence 
not sufficient for the problem of this paper. They also do not 
assist in creating solutions that meet the definition of 
management of the incorporated knowledge as proposed in 
our previous paper [37].  

 Several studies have investigated solutions to the MPP. 
These solutions differ but can be characterised by the 
framework used in modelling the MPP and the extent to which 
they incorporate different types of knowledge. Recently, three 
ways for the classification of solution models [7, 38, 39] for 
the MPP have emerged in literature.  

 The first identifies four classes that are used in automated 
menu planning approaches: trial-and-error, optimisation, 
metaheuristic and fuzzy reasoning approaches [38]. Most 
works cited in [38] did not focus on manageable incorporation 
of food and nutrition therapy guideline knowledge into 
solution models suggesting research opportunities remain in 
this area.  

 The second relies on four major categories of 
computational models [7]: rule-based, document-based, 
decision-logic expression languages, and task-network 
models. However, none provides an approach for supporting 
formalisation of complete food and nutrition therapy 
guidelines.  

 The third and last arose from the work of the authors of 
this paper [39]. It classifies solutions depending on whether 
they are based on nutrition, mathematical, computational or 
hybrid model [39]. Nutrition models are problem-specific and 
are usually embodied in a nutrition guideline and tend to be 
mapped onto either the mathematical or computational model, 
or both. Mathematical models are based on some 
mathematical formulation such as Linear Programming 
(LP) which has been used to model the MPP [40, 41]. 
Computational models use relevant computing paradigms and 
formalisms such as: GA [22], Quantum Particle Swarm 
Optimisation [42], Ant Colony Optimisation [42, 43] and 
Knapsack Problem [44]. Hybrid models integrate two or more 
models [29, 37, 45].  

 In the literature, these models do not provide support for 
managing the incorporated knowledge and hence do not allow 
for customisation of resulting technologies to suit different 
contexts. This work therefore investigates this gap in literature 
with the aim of achieving manageable incorporation of 
knowledge into solution models for the MPP.  

V. FRAMEWORK FOR MANAGING KNOWLEDGE 
INCORPORATED INTO SOLUTION MODELS FOR FOOD AND 

NUTRITION THERAPY 

A. Solution Models for the MPP 
The FNTGs are incorporated into solution models for the 

MPP according to the level of generality or specificity of the 
knowledge with respect to the target population. Table II 
shows that knowledge is incorporated into solution models at 
four levels, namely, L0, L1, L2 and L3 [39]. L3 incorporates 
highly-targeted knowledge. This knowledge is very specific to 
the target population. In practice, L3 does not preclude L2, 
which, in turn, does not preclude L1. This means a guideline 
about a specific disease or patient at L3 does not preclude the 
guideline at L2 or L1. This is so because at L3, although a 
guideline has more detailed and specific information and 
knowledge that applies to specific circumstances, guidelines 
that apply in general circumstances are still applicable. Table 
2 also identifies the knowledge element classification for MPP 
solution models. KD0 represents models at knowledge 
incorporation level L0 which do not incorporate any 
knowledge and hence not useful in food and nutrition therapy. 
KD1 represent generic models at knowledge incorporation 
level L1. These are not specific to a health problem or 
population but are useful in nutrition for general health. Each 
element may also incorporate the knowledge contained in the 
previous levels. This means that models at level L3 can be used 
in conjunction with knowledge from general models for 
specific groups of people (L2) and for healthy people (L1). 
However, the models at L0 could not be used in place of more 
advanced models since they do not possess any knowledge at 
all. 

B. Manageable Incorporation of Knowledge into Solution 
Models for the MPP 

Manageable incorporation of knowledge into solution 
models requires allowing flexibility in form of customisation 
of the knowledge incorporated into that model. This is 
necessary to support technology transfer and adaptation. A 
manageable solution would support incorporation of 
knowledge elements specified in Table II while also 
supporting the basic and advanced knowledge manipulation 
operations presented in Table III. On one hand, there are 
models which are completely unmanageable while, on the 
other hand, there are models that are completely manageable. 
In between, there are models with low, medium and high 
levels of management of incorporated knowledge.  Solution 
models could incorporate knowledge elements from the 
knowledge dimensions presented in Table II. If a solution 
model incorporates elements from any one of these knowledge 
element classifications but does not support any management 
operations, that solution model is deemed not to support 
management of incorporated knowledge. Such solution 
models constrain flexibility in the customisation and so fails 
to support technology transfer. Hence, such solution models 
are not very useful in food and nutrition therapy. 

If a solution model supports all or most of the operators in 
Table III, then, for the purpose of this paper, it could be said 
to support complete management of the incorporated 
knowledge. Thus, the model could be adapted for use in 
different regions of the world. Such models are more suitable 
for patients or specific diseases and are ideal for effective 
dissemination of guideline knowledge in environments where  
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TABLE II.  KNOWLEDGE INCORPORATION LEVELS 

Level  Definition Description Knowledge 
Element 

Classification 

L0 
NK: No 
knowledge 

No knowledge is 
incorporated 

KD0: Model not 
useful in nutrition 
therapy 

L1 

NTK: 
Non-
targeted 
knowledge 

Knowledge not specific 
to a particular 
disease/patient is 
incorporated 

KD1: General 
models for healthy 
people 

L2 

TK: 
Targeted 
knowledge 

General guidelines about 
a specific disease/patient 
but are not identifiable 
and manageable as a 
complete nutrition 
therapy guideline.  

KD2: General 
models for specific 
groups of people 

L3 

HTK: 
Highly 
targeted 
knowledge 

Complete guidelines 
about a specific 
disease/patient are 
incorporated 

KD3: Specialised 
models for patients 
and specific 
diseases 

TABLE III.  KNOWLEDGE MANIPULATION OPERATIONS 

Operation 
Class 

Operation Description 

 
 
Basic 
knowledge 
manipulation 
operations 
(cf. CRUD) 

Create Generate a new knowledge base 
from guidelines 

Retrieve/Query Answer requests for knowledge 
Change/update Modify knowledge base to 

accommodate changes in guidelines 
Delete/Remove Delete knowledge from the 

knowledge base 
 
Advanced 
knowledge 
manipulation 
operations 

Customise Modify model and knowledge base 
to suit specific scenario 

Replace Replace guideline with different one 
Share Export generic version of knowledge 

base 

guidelines are constantly changing or varied. It should be 
noted that, within the meal planning therapy domain, there are 
models that only support basic operations.  Such models are 
suitable only for healthy people since the knowledge 
incorporated in the model is not comprehensive enough to be 
highly targeted. There are also models that support either one 
operation represented using regular expression terminology as 
([share, replace, customise]{1}) or two operations ([share, 
replace, customise]{2}). The larger the number of operations 
supported by a solution model, the easier it is to manage 
knowledge, and the more useful the model becomes to patients 
and specific diseases.  

 The ideal situation is to have MPP solution models that 
support full management of incorporated knowledge that is 
highly targeted to a specific health condition. Fig. 1 shows that 
most works modelling the MPP using GAs except [46] are 
using approaches to knowledge incorporation which are not 
manageable because they did not define any knowledge 
management operations beyond the basic operations. Most of 
these works either incorporated NK or NTK in the GA. [46] is 
the only work falling in the class of models that are hard to 
manage from the knowledge perspective since it has not 
defined some basic operations. Therefore, it can be concluded 
that, existing approaches do not support manageable 
incorporation of knowledge into GAs for the MPP. 

VI. EXPERIMENTAL INVESTIGATION OF THE KNOWLEDGE 
MANAGEMENT CHALLENGE 

A. Experiment Approach 
An experiment was undertaken to investigate management 

challenges of guideline knowledge incorporation into the GA-

based solution model for the MPP. GA were chosen because 
most works in literature modelling the MPP used GAs in 
which some knowledge was incorporated into the GA 
algorithms [32]. Fig. 2 shows the overall high-level design of 
experiments. In this design, the user provides personal data as 
input to the system. Upon receiving the personal data input, 
the system also receives knowledge from the knowledge base. 
The system then generates meals and exports them to an 
external file which is then accessed by the user to get the 
generated meals. Knowledge was incorporated in GA 
operators, namely, crossover, mutation and selection. The 
experiment modelled the MPP using GA and a Python-based 
framework called DEAP [47]. The experiment had two parts 
(P1 and P2). Crossover is one of the Genetic operators modified 
to incorporate knowledge.  

Experiment P1 sought to show that GAs do not solve the 
MPP in their natural form without incorporating much 
guideline knowledge. This was demonstrated by 
implementing the GA without incorporating much domain 
knowledge in the Genetic operators of the algorithm. In P1, 
personal data and Food Composition Data (FCD) were 
incorporated in some genetic operations while other genetic 
operators like crossover did not incorporate knowledge. 

Experiment P2 was aimed at showing that: (1) current 
guideline knowledge incorporation methods for GA are not 
manageable; and (2) current GAs do not have natural ways of 
supporting manageable incorporation of guideline knowledge. 
In P2, more knowledge (FCD, harmony rules, personal data, 
food and Dietary Reference Intakes) was incorporated in 
genetic operations and population initialisation. 

In experiment P2, knowledge was formalised into a Prolog 
knowledge-base which was queried from the Genetic 
Algorithm. Table IV and Table V show excerpts of the Food 
Composition Database and Dietary Reference Intakes 
respectively. The knowledge in the two tables have not yet 
been formalised into computer interpretable guidelines. 
Listing I and Listing II show code for nutrition knowledge 
which was incorporated in experiment P2. Listing I shows the 
knowledge from the Food Composition Database in Table IV, 
while Listing II shows a representation of some of the 
knowledge in Table V 

Domain experts recommended use of DRIs. Since DRIs 
for the United States of America were readily available, they 
are used in this paper. Meals from P1 and P2 were compared 
on quality to demonstrate that GAs do not solve the MPP in 
their natural form without incorporation of plentiful 
knowledge. The choice of genetic parameters (chromosome 
length, population size, crossover and mutation probability) 
was informed by previous studies which implemented GAs to 
solve the MPP (see Table VI). 250 generations were used in 
all experiments, and the crossover probability was 0.9 while 
the mutation probability was 0.2. In both P1 and P2, meals were 
prepared under the assumption that three meals are taken per 
day by a 35-year old male adult who was physically active. 

B. Results of Experiments: Management Challenges of 
Knowledge Incorporation into Solution Models for the 
MPP 

 Fig. 3 shows the results from both P1 and P2 in which 241 
meals were produced for each part of the experiment. The 
mean fitness of P1 is 21 while the mean of P2 is 17. 
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Fig. 1: Application of characterisation model for 

manageable incorporation of knowledge into Genetic models 
for the MP 

 
Fig. 2: Overall design of Experiments P1 and P2 

TABLE IV.  EXTRACT OF FOOD COMPOSITION DATA BEFORE 
FORMALISATION (CHITSIKU, 1989) 
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Apple 52 0.26 13.81 6 0.12 1 0.04 0.027 
Avocado  167 1.96 8.64 13 0.61 8 0.68 0.17 
Bananas 89 1.09 22.84 5 0.26 1 0.15 0.078 
Baobab 439 5.22 1.83 35.14 29 162 330 

 

Orange  47 0.94 11.75 40 0.1 0 0.07 0.045 
Lemon 29 1.1 9.32 26 0.6 2 0.06 0.037 

TABLE V.  DIETARY REFERENCE INTAKES BEFORE FORMALISATION 
(NATIONAL ACADEMY OF SCIENCES, 2006) 
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Infants 
       

0–6 months 0.7* 60* ND 31* 4.4* 0.5* 9.1* 
7–12 months 0.8* 95* ND 30* 4.6* 0.5* 11+ 

Children 
       

1–3 years 1.3* 130 19* NDc 7* 0.7* 13 
4–8 years 1.7* 130 25* ND 10* 0.9* 19 

Males 
       

9–13 years 2.4* 130 31* ND 12* 1.2* 34 
14–18 years 3.3* 130 38* ND 16* 1.6* 52 
19–30 years 3.7* 130 38* ND 17* 1.6* 56 
31–50 years 3.7* 130 38* ND 17* 1.6* 56 
51–70 years 3.7* 130 30* ND 14* 1.6* 56 
>70 years 3.7* 130 30* ND 14* 1.6* 56 

 

LISTING I.  EXTRACT OF FOOD COMPOSITION KNOWLEDGEBASE IN 
PPROLOG 

1 
2 
3 
4 
5 

nutrientQuantity(19, avocado, protein, 1.96). 

nutrientQuantity(12, bananas, protein, 1.09). 

… 

nutrientQuantity(18, apple, calcium, 6). 

nutrientQuantity(19, avocado, calcium, 13).… 

LISTING II.  DIETARY REFERENCE INTAKES IN PROLOG 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

lifeStageGroup(male). 
ageGroup(f,31,50). 
belongsToAgeGroup(X,Y):-ageGroup(X,M,N), Y>=M, Y=<N. 
nutrient(energy). 
nutrient(protein). 
nutrient(carbohydrate). 
unit(energy, kcal). 
unit(protein, g). 
unit(carbohydrate, g). 
rdi(male, b, protein, 19). 
rdi(male, f, carbohydrate, 130). 
#Energy requirements 
sex(male). 
age(u,31,35). 
belongsToage(X,Y):-age(X,M,N),Y>=M,Y=<N. 
energy(male,u,sedentary,energy,2200). 
energy(male,u,moderately_active,energy,2400). 
energy(male,u,active, energy,2800). 

TABLE VI.  EXPERIMENTAL DESIGN PARAMETERS. 
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Chromosome 
Length 7   

10 [48];  
5 [49]; 
7 [45] 

Number of 
generations 250  

6-250 [49];  
40 [22];  
Max of 200 [45] 

Number of 
meals per day 3 5 [48]  Mutation 

type Gaussian  Uniform mutation 

Population 
size 200  

100 [48];  
40-200 
[49] 

Crossover 
type 

One point 
crossover 

Linear descending 
mutation [48]; 
Arithmetic 
crossover;  
Single point 
crossover [49];  
Partially Matched 
Crossover [29];  
Two-step simple 
crossover [45] 

Crossover 
probability 0.9 

0.7 [48];  
0.9 
[22,49];  

Selection 
type 

Tournament 
selection 

Tournament 
selection [45]; [48] 

Mutation 
probability 0.2 

0.1-0,017 
[48];  
0.2 [49];  
0.1 [22]; 

Population 
initialisatio
n 

Generated 
randomly  

Randomly 
Generated [49]  

Number of 
Iterations 250 

35 [48];  
150000 
[49];  

10 

 

   

 
(1) Results: GAs do not solve the MPP in their natural 

form without incorporating much knowledge 
 

In P1, little knowledge (personal data and FCD) was 
incorporated in the GA resulting in meals with high fitness 
values but low levels of harmony as shown in Table 8. Meals 
from P1 have higher fitness values because harmony has been 
sacrificed. Such meals satisfy most nutrient requirements but 
are not edible. In P2, more knowledge (personal data, FCD, 
harmony and Dietary Reference Intakes) was incorporated in 
the GA resulting in meals with relatively lower fitness values 
but higher levels of harmony as shown in Table VII. Meals 
from P1 cannot be classified as either meals for breakfast or 
lunch or dinner which can be done with meals from P2. In P1, 
the crossover function does not incorporate knowledge (see  
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Fig 3. Results of experiments P1 and P2 

TABLE VII.  SAMPLE MEALS FROM THE EXPERIMENT. 
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P1 

Powdered milk (136.8g), Okra (230.3g), Cabbage 
cooked (306.0g), Turnip (200.0g), Chicken with 
skin (428.0g), Dark bread (162.8g) 

21 Low 

Pe
rs

on
al

 d
at

a 
an

d 
so

m
e 

FC
D

 
Guava (358.0g), Powdered milk( 98.9g), Spinach( 
219.5g), Pumpkin( 449.6g), and Cake homemade 
(184.8g) 

21 Low 

Powdered milk (401.4g), Yogurt (439.7g), Okra 
(72.5g), Chicken with skin (309.0g), mufushwa 
(405.4g), Candy (355.2g) 

21 Low 

Guava (212.8g), Powdered milk (68.1g), 
Cheese_Regular (246.2g), Beans or lentils (39.1g), 
Avocado (251.5g), Lima beans (133.4g) 

20 Low 

 
 
 
 
 
 
 
 
 
P2 

Spinach (486.5g), Samp (146.5g), Fish (7.0g), Lima 
beans (249.4g), Mowa (372.0g), Beans or lentils 
(79.4g) 

19 High 

Pe
rs
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at

a,
 h

ar
m

on
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of
 f

oo
d 

ite
m

s, 
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D
 a

nd
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 R
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In

ta
ke

s. 

Spinach( 229.7g), Taro (334.0g), Peas, cooked 
(336.5g), Pumpkin (381.8g), Macaroni, cooked 
(470.9g), Cake homemade (197.2g) 

19 High 

Cabbage, fresh (300.7g), Pumpkin (223.1g), Birds 
(22.3g), Sadza from sorghum (351.0g), skimmed 
milk (152.9g), Canned tuna (43.8g) 

19 High 

Carrot, fresh (263.7g), Okra (364.9g), Samp 
(90.4g), Avocado (419.2g), Fish (303.1g), Lima 
beans (450.4g) 

19 High 

Listing II) resulting in crossing over of food items which are 
not in the same category thereby producing meals with very 
low levels of harmony. The same conclusion can be reached if 
the other genetic operations are not knowledge-based. 

In summary, GAs do not solve the MPP in their natural 
form without incorporating much knowledge. This finding 
confirms what is in found in literature since there are some 
works [46], [22], and [48] which incorporated domain 
knowledge in GAs for the MPP even though the knowledge 
was hard to manage. However, there are very few works in 
literature which modelled the MPP using GA but without 
incorporating much domain knowledge such as [43]. As can 
be seen these works are now aged and the current trend is to 
incorporate domain knowledge in GA in order to solve the 
MPP.   

(2) P2 Results: The difficulty of Managing Incorporated 
Knowledge  

GAs do not have natural ways of supporting 
incorporation of knowledge: Knowledge can be 
incorporated into GAs by either tightly integrating into the 
genetic operators or storing in a knowledge-base to be 
consulted by the operators. Both approaches will require 
provision for query and operator support for managing the 
knowledge, which is widely lacking in the research literature. 
For example, in Experiment P2, the crossover function had to 
be modified to incorporate knowledge about food item 
categories otherwise unpalatable meals were going to be 
produced. Table VIII shows how Genetic operators were also 
modified to incorporate domain knowledge. The same table 
also shows the Genetic operations and associated changes  

TABLE VIII.  GENETIC ALGORITHM MODIFICATION WHEN KNOWLEDGE 
IS INCORPORATED. 

Genetic 
Operation 

Experiment P2 

GA Code 
Change Genetic Algorithm Modification 

Crossover  Function modified to crossover only food items in the same 
category 

Mutation  Function modified to ensure food item weights did not exceed 
limits 

Fitness 
function  Function modified to incorporate FCD and NRVs 

Selection  Only food items in the same category were selected 

which were undertaken to incorporate knowledge. In 
VIII it is shown that the GA code had to be changed in 
order to incorporate knowledge in the algorithm. A tick 
() in the table means change that the GA code had to 
be changed to implement the function. This result is 
supported by [47] who had to devise a way of replacing 
harmony rules by implementing them as a plug-in. Even 
though this was good idea, it is far from being adequate 
for supporting querying and manipulation of the 
incorporated knowledge. 

Knowledge incorporated into GA-based models for 
the MPP using existing approaches is hard to manage: The 
previous result has shown that GAs indirectly support 
knowledge incorporation. However, the knowledge 
incorporated using the existing approach is hard to manage if 
there is no support for query and manipulation operators on 
the incorporated knowledge. In P2, it is not easy to manage 
the incorporated knowledge because the model does not 
support management operations such as create, update, 
delete, customise, replace and query. Table IX presents the 
manipulation and query operations on incorporated 
knowledge indicating whether or not changes must be 
performed on the Genetic Algorithm code and the 
incorporated knowledge when the operators are applied. A 
tick () in Table IX means change is necessary for the 
management operation to be applied, while a blank cell means 
no change is required. A question mark (?) means the 
operation cannot the applied to the GA or knowledge. Table 
IX also shows that if management operations are to be applied 
to P2 then both the knowledge and model should change. This 
model-knowledge dependency makes it hard to manage 
knowledge incorporated into GAs for the MPP using the 
existing approaches. 

VII. TOWARDS SUPPORTING THE MANAGEMENT OF 
INCORPORATED KNOWLEDGE 

The work of the authors aim to create a foundation for an 
approach to manageable incorporation of knowledge into 
solution models incorporated into technologies that may be 
transferred to developing regions of the world. The main 
challenge is to achieve knowledge and model independence. 
Thus, if the knowledge changes, the code or model does not 
have to be modified. Several works in literature like [22] and 
[48] report attempts to incorporate knowledge into the GA but 
the knowledge was not highly targeted knowledge (i.e., not 
problem-specific) and did not define the problem of 
supporting the customisation of the incorporated knowledge. 
In the absence of such support and the existence of the need  
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TABLE IX.  CHANGES TO BE EFFECTED WHEN MANAGEMENT 
OPERATIONS ARE APPLIED. 

 Management 
Operation 

Experiment P2 

GA Code 
Change 

Knowledge-
Base 

Change 

Standard CRUD 
Operations on 
Knowledge 

Create   

Retrieve/Query   

Update/Change   

Delete/Remove   

Advanced 
knowledge 
manipulation 
operations 

Customise    

Replace     

Share  ? ? 

to manipulate the knowledge, the resulting technology cannot 
be customised. A new approach is required in which there is 
comprehensive support for the management of the 
incorporated knowledge without affecting the solution models 
to facilitate appropriate technology transfers. 

How manageable incorporation of highly targeted food 
and nutrition therapy guideline knowledge into solution 
models for the MPP can be achieved remains a challenge that 
is worthy of further research attention. For knowledge 
incorporated into a solution model for the MPP to be useful 
and manageable, the knowledge must be highly targeted and 
be able to be queried and manipulated to the lowest 
granularity possible.  

Most solution models require very tight coupling between 
the model and the incorporated knowledge elements in order 
to produce realistic solutions. Therefore, on-going work of the 
authors will explore an approach based on the combination of 
knowledge and model-based methods with formal process and 
model specifications, which is expected to allow both the 
solution model and the incorporated knowledge to be formally 
specified, executed, queried and manipulated. Even when the 
solution model and the incorporated knowledge are tightly 
integrated, both are expected to be subjected to query, 
execution and manipulation operations leading to technologies 
that are customisable to suit local circumstances.  

VIII. SUMMARY  
This paper investigated the challenge of managing 

knowledge incorporated into computational models. This was 
done in the context of manageable incorporation of food and 
nutrition therapy guideline (FNTG) knowledge into genetic 
algorithms (GA) for the meal planning problem (MPP). A 
framework for manageable incorporation of knowledge into 
the solution model based on the GA for the MPP was 
developed. Experiments were undertaken to investigate how 
manageable the knowledge incorporated in the GA for the 
MPP is. Results revealed that the incorporated knowledge the 
GA solution model is difficult to manage. This conclusion 
could be extended to solution models other than the models 
used in this paper and to other problem domains than the MPP. 
New engineering methods that support operations to execute, 
query and manipulate knowledge incorporated into solution 
models would be beneficial in the development of 
customisable technologies that would be transferrable across 
regions of the world. 

Future work will entail: (1) Developing a new approach to 
manageable incorporation of formalised highly targeted 
knowledge into solution models for the MPP; (2) Developing 

strategies and better engineered solutions for real uses of the 
MPP solution model in the context of HIV/AIDS nutrition 
therapy; and, (3) Application of the model in the mobile web-
based context of a developing country to facilitate effective 
manageable knowledge and technology transfer from experts 
to people living with HIV/AIDS. 
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