PAMBAYESIAN: Patient Managed decision-support using Bayesian Networks

Goal:
- To create a new generation of intelligent medical decision support systems for direct patient use with real-time monitoring for chronic conditions, based on expert-built Bayesian Networks.
- To increase patient independence and decrease reliance on direct consultation.
- To allow more autonomous care at home and reduce associated health care cost.

Case Studies:
- Gestational Diabetes:
 - To help pregnant women with diabetes, in partnership with their health practitioners.
 - To manage both lifestyle and appropriate pharmacotherapy.
- Musculoskeletal problems:
 - To help patients with inflammatory joint disease.
 - To optimise care of fluctuating disease.
- Atrial Fibrillation:
 - To help patients with irregular heartbeat and reduce the risk of stroke due to blood clots forming in the heart.

Principal Investigator: Prof. Norman Fenton

Other Investigators:
- GMUL EECS: Dr William Marsh, Prof. Paul Curzon, Dr Akram Alomainy, Prof. Martin Neil.
- Centre for Genomics and Child Health: Dr Graham Hitman.
- Centre for Experimental Medicine and Rheumatology: Dr David Collier, Dr Frances Humby.
- Diabetes and Obesity Research Group: Dr MS Huda, Institute of Bioengineering: Dr Dylan Morrissey.
- Centre for Primary Care and Public Health: Prof. Anita Patel, Blizzard Institute: Dr Victoria Tzortziou-Brown.

PAMBAYESIAN is an EPSRC funded project awarded to Queen Mary (value £1,538,497 for a 3-year programme June 2017-May 2020). This project is also supported by digital health firms with extensive experience developing patient engagement tools for clinical practice, including: BeMoreDigital, Mediwise, Rescon, SMART Medical, uMotif, IBM UK, Hasiba Medical and Agena.

Graphical probabilistic models with causal dependencies

Some of our Bayesian network applications:
- Predict the likelihood of acute traumatic coagulopathy in the Emergency Department [1].
- Predict the likelihood of survival for an injured soldier in successive stages of the patient’s care [2].
- Determine whether a prisoner is suitable for release based on the risk of serious re-offence [3].
- Compare risks of alternative medical diagnosis [4].
- Many more general applications include operational risk, transport safety, sports prediction, legal arguments and forensic evidence interpretation [5].

Questions answered by Bayesian Networks:

- **Decision:** Given these symptoms and the patient attributes, what is the best treatment?
- **Risk:** If I do nothing, what is the probability that my symptoms will get worse in the next 24 hours?
- **Intervention:** What are the chances that increasing this medication now will treat the current symptoms?
- **Counterfactual:** If I hadn’t taken this medication last week, what is the probability that I would have gotten well on my own?
- **Explanation:** Why am I being told that there is an 80% chance that this course of treatment will manage my illness?
